Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Loya, Allen Alvarez"'
Publikováno v:
Journal of Computational Physics,522(2025),113597
High order accurate Hermite methods for the wave equation on curvilinear domains are presented. Boundaries are treated using centered compatibility conditions rather than more standard one-sided approximations. Both first-order-in-time (FOT) and seco
Externí odkaz:
http://arxiv.org/abs/2406.19496
Singularly perturbed dynamical systems, commonly known as fast-slow systems, play a crucial role in various applications such as plasma physics. They are closely related to reduced order modeling, closures, and structure-preserving numerical algorith
Externí odkaz:
http://arxiv.org/abs/2402.15839
We consider the application of the WaveHoltz iteration to time-harmonic elastic wave equations with energy conserving boundary conditions. The original WaveHoltz iteration for acoustic Helmholtz problems is a fixed-point iteration that filters the so
Externí odkaz:
http://arxiv.org/abs/2205.12344
Autor:
Loya, Allen Alvarez, Appelö, Daniel
We present a Hermite interpolation based partial differential equation solver for Hamilton-Jacobi equations. Many Hamilton-Jacobi equations have a nonlinear dependency on the gradient, which gives rise to discontinuities in the derivatives of the sol
Externí odkaz:
http://arxiv.org/abs/2105.05364
Szeg\H{o}'s First Limit Theorem provides the limiting statistical distribution (LSD) of the eigenvalues of large Toeplitz matrices. Szeg\H{o}'s Second (or Strong) Limit Theorem for Toeplitz matrices gives a second order correction to the First Limit
Externí odkaz:
http://arxiv.org/abs/1610.00084
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bourget, Alain1 abourget@fullerton.edu, Loya, Allen Alvarez1 allenalvarez@csu.fullerton.edu, McMillen, Tyler1 tmcmillen@fullerton.edu
Publikováno v:
Japanese Journal of Mathematics. Mar2018, Vol. 13 Issue 1, p67-107. 41p.