Zobrazeno 1 - 10
of 4 646
pro vyhledávání: '"Low-rank approximation"'
Publikováno v:
Shanghai Jiaotong Daxue xuebao, Vol 58, Iss 10, Pp 1524-1533 (2024)
With the increase in the proportion of renewable energy connected to the grid, a large number of N-1 security constraints should be considered in the security-constrained economic dispatch (SCED) to ensure the reliable operation of the power system,
Externí odkaz:
https://doaj.org/article/fa06cbb33e5842dea1e09ad561bdf570
Autor:
Jungmin Kwon, Hyunggon Park
Publikováno v:
IEEE Access, Vol 12, Pp 1266-1279 (2024)
This paper proposes a reliable data dissemination framework for edge networks, leveraging network coding combined with low-rank approximation. We consider an edge network that consists of a server and power-limited mobile devices, where the data is b
Externí odkaz:
https://doaj.org/article/a652363d112247f8b0e72d260bc07977
Autor:
Nina Golyandina, Nikita Zvonarev
Publikováno v:
Algorithms, Vol 17, Iss 9, p 395 (2024)
In singular spectrum analysis, which is applied to signal extraction, it is of critical importance to select the number of components correctly in order to accurately estimate the signal. In the case of a low-rank signal, there is a challenge in esti
Externí odkaz:
https://doaj.org/article/ec47366db3f4403ca668501bb918712a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Letters in High Energy Physics, Vol 2024, Iss 1 (2024)
Sparse representation and low-rank approximation are popular for image denoising, but struggle with complex structures in heavily degraded images due to inadequate local descriptors and coefficient shrinkage rules. Hence, this research introduces a n
Externí odkaz:
https://doaj.org/article/dd09ed69b453495caa6ff1084da02689
Autor:
Katrine Ottesen Bangsgaard, Genoveva Burca, Evelina Ametova, Martin Skovgaard Andersen, Jakob Sauer Jørgensen
Publikováno v:
Applied Mathematics in Science and Engineering, Vol 31, Iss 1 (2023)
Spectral computed tomography has received considerable interest in recent years since spectral measurements contain much richer information about the object of interest. In spectral computed tomography, we are interested in the energy channel-wise re
Externí odkaz:
https://doaj.org/article/5dfac3a16651476aa12a1668f4ec8634
Publikováno v:
Yuanzineng kexue jishu, Vol 57, Iss 4, Pp 818-827 (2023)
Resonance calculation is one of the most important and difficult parts of core analysis and can dominate the accuracy of the core analysis. There are three methods for resonance computation: ultra-fine group (UFG) method, equivalence method, and subg
Externí odkaz:
https://doaj.org/article/f826844a0f3e4c6ba829a03fde7d0e96
Publikováno v:
Applied Sciences, Vol 14, Iss 11, p 4507 (2024)
For system identification problems associated with long-length impulse responses, the recently developed decomposition-based technique that relies on a third-order tensor (TOT) framework represents a reliable choice. It is based on a combination of t
Externí odkaz:
https://doaj.org/article/5c6247363a5b4bf7a7c1a55d077cd4f5
Autor:
Jacob Benesty, Constantin Paleologu, Cristian-Lucian Stanciu, Ruxandra-Liana Costea, Laura-Maria Dogariu, Silviu Ciochină
Publikováno v:
Applied Sciences, Vol 14, Iss 6, p 2430 (2024)
In linear system identification problems, the Wiener filter represents a popular tool and stands as an important benchmark. Nevertheless, it faces significant challenges when identifying long-length impulse responses. In order to address the related
Externí odkaz:
https://doaj.org/article/73d4211db60a4f529875a97ccce3e015
Publikováno v:
Results in Applied Mathematics, Vol 20, Iss , Pp 100401- (2023)
Many applications of the matrix exponential exp(At) of a real matrix A and a real parameter t require repeated evaluation of it for different values of t. Such evaluations are time consuming and encounter the curse of dimensionality, especially in th
Externí odkaz:
https://doaj.org/article/8a611a9c659e4003bd36a6433bac7062