Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Lovász conjecture"'
Autor:
S.M. Hegde, Suresh Dara
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 17, Iss 1, Pp 614-631 (2020)
In 1972, Erdős–Faber–Lovász (EFL) conjectured that, if is a linear hypergraph consisting of edges of cardinality , then it is possible to color the vertices with colors so that no two vertices with the same color are in the same edge. In 1978,
Externí odkaz:
https://doaj.org/article/c2551f2022f141a4b2cb3503516de6e6
Autor:
Yun Feng, Wensong Lin
Publikováno v:
Symmetry, Vol 14, Iss 7, p 1327 (2022)
Erdős–Faber–Lovász conjecture states that if a graph G is a union of the n edge-disjoint copies of complete graph Kn, that is, each pair of complete graphs has at most one shared vertex, then the chromatic number of graph G is n. In fact, we on
Externí odkaz:
https://doaj.org/article/7ec701c0c73841feaf34b3cba5a15a28
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ramamonjisoa, Frank
Cette thèse réunit en trois articles mon intérêt éclectique pour la théorie des graphes. Le premier problème étudié est la conjecture de Erdos-Faber-Lovász: La réunion de k graphes complets distincts, ayant chacun k sommets, qui ont deux-
Externí odkaz:
http://hdl.handle.net/1866/27810
Autor:
Bosica John, Tardif Claude
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 35, Iss 1, Pp 197-202 (2015)
The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where
Externí odkaz:
https://doaj.org/article/2a395d81c6d44d56845f67295459faff
Autor:
Lin, Yun Feng, Wensong
Publikováno v:
Symmetry; Volume 14; Issue 7; Pages: 1327
Erdős–Faber–Lovász conjecture states that if a graph G is a union of the n edge-disjoint copies of complete graph Kn, that is, each pair of complete graphs has at most one shared vertex, then the chromatic number of graph G is n. In fact, we on
Coloring linear hypergraphs: the Erdős–Faber–Lovász conjecture and the Combinatorial Nullstellensatz
Autor:
Oliver Janzer, Zoltán Lóránt Nagy
Publikováno v:
Designs, Codes and Cryptography, 90 (9)
The long-standing Erdos-Faber-Lovasz conjecture states that every n-uniform linear hypergaph with n edges has a proper vertex-coloring using n colors. In this paper we propose an algebraic framework to the problem and formulate a corresponding strong
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2fdb429bd9a97f074e1343aa830f0590
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Erik E. Westlund
xvii 1 Cayley Graphs and Hamilton Cycles 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Hami
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8d500707415e74762ecc2debb311eeba
https://doi.org/10.37099/mtu.dc.etds/206
https://doi.org/10.37099/mtu.dc.etds/206
Autor:
Guillermo Alesandroni
Publikováno v:
Discrete Mathematics. 344:112401
Generalizing the concept of dense hypergraph, we say that a hypergraph with n edges is weakly dense, if no k in the half-open interval [ 2 , n ) is the degree of more than k 2 vertices. In our main result, we prove the famous Erdős–Faber–Lovasz