Zobrazeno 1 - 10
of 538
pro vyhledávání: '"Lovász L"'
Autor:
Bonamassa, I., Ráth, B., Pósfai, M., Abért, M., Keliger, D., Szegedy, B., Kertész, J., Lovász, L., Barabási, A. -L.
We explore the impact of volume exclusion on the local assembly of linear physical networks, where nodes and links are hard-core rigid objects. To do so, we introduce a minimal 3D model that helps us zoom into confined regions of these networks whose
Externí odkaz:
http://arxiv.org/abs/2401.02579
Autor:
Wielenberg, A., Lovasz, L., Pandazis, P., Papukchiev, A., Tiborcz, L., Schöffel, P.J., Spengler, C., Sonnenkalb, M., Schaffrath, A.
Publikováno v:
In Nuclear Engineering and Design 1 December 2019 354
Publikováno v:
Proc. Natl. Acad. Sci. USA 107: 7640-7645, (2010)
We introduce a new approach to constructing networks with realistic features. Our method, in spite of its conceptual simplicity (it has only two parameters) is capable of generating a wide variety of network types with prescribed statistical properti
Externí odkaz:
http://arxiv.org/abs/1004.5225
Publikováno v:
Combinatorics, Probability and Computing (2005) 14,737-754
Motivated by the result that an `approximate' evaluation of the Jones polynomial of a braid at a $5^{th}$ root of unity can be used to simulate the quantum part of any algorithm in the quantum complexity class BQP, and results relating BQP to the cou
Externí odkaz:
http://arxiv.org/abs/0908.2122
Motivated in part by various sequences of graphs growing under random rules (like internet models), convergent sequences of dense graphs and their limits were introduced by Borgs, Chayes, Lov\'asz, S\'os and Vesztergombi and by Lov\'asz and Szegedy.
Externí odkaz:
http://arxiv.org/abs/0905.3806
We consider sequences of graphs and define various notions of convergence related to these sequences: ``left convergence'' defined in terms of the densities of homomorphisms from small graphs into the graphs of the sequence, and ``right convergence''
Externí odkaz:
http://arxiv.org/abs/math/0702004
It is shown that a graph parameter can be realized as the number of homomorphisms into a fixed (weighted) graph if and only if it satisfies two linear algebraic conditions: reflection positivity and exponential rank-connectivity. In terms of statisti
Externí odkaz:
http://arxiv.org/abs/math/0404468
The cover time C of a graph G is the expected time for a random walk starting from the worst vertex to cover all vertices in G. Similarly, the blanket time B is the expected time to visit all vertices within a constant factor of number of times sugge
Externí odkaz:
http://arxiv.org/abs/math/0005121
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lovász, L.1 (AUTHOR) lovasz@caesar.elte.hu
Publikováno v:
Acta Mathematica Hungarica. Aug2020, Vol. 161 Issue 2, p516-539. 24p.