Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Lourdes Uribe"'
Publikováno v:
Data in Brief, Vol 29, Iss , Pp - (2020)
In this Data in Brief, we provide the source code for the equality constrained multi-objective optimization benchmark problems EqDTLZ 1–4 and EqIDTLZ 1–2 proposed in the research article “A Benchmark for Equality Constrained Multi-objective Opt
Externí odkaz:
https://doaj.org/article/2d32a45b88874ec5b6ab67322e95adb9
Publikováno v:
Mathematics, Vol 8, Iss 10, p 1822 (2020)
Multi-objective optimization problems (MOPs) naturally arise in many applications. Since for such problems one can expect an entire set of optimal solutions, a common task in set based multi-objective optimization is to compute N solutions along the
Externí odkaz:
https://doaj.org/article/f505febf83fc43c3922df28230c584d1
Autor:
Lilla Beke, Lourdes Uribe, Adriana Lara, Carlos A. Coello Coello, Michal Weiszer, Edmund K. Burke, Jun Chen
Publikováno v:
IEEE Transactions on Evolutionary Computation. :1-1
Autor:
Marian Fernández-Luco, Ana J. Romón‐Gómez, Luis Ángel Angón-Puras, Amaia Etxebarria, Eunate Arana‐Arri, Gorka Larrinaga, Maider Azkuenaga, Ainhoa Pikaza, Lourdes Uribe‐Etxebarria, Rafael Gracia-Ballarín, María Jesús Barrenengoa-Cuadra, Ana Zorrilla, María Muñoa‐Capron‐Manieux, Gixane Orrantia
Publikováno v:
Addi. Archivo Digital para la Docencia y la Investigación
instname
European Journal of Pain (London, England)
Addi: Archivo Digital para la Docencia y la Investigación
Universidad del País Vasco
instname
European Journal of Pain (London, England)
Addi: Archivo Digital para la Docencia y la Investigación
Universidad del País Vasco
Background There has been increased interest in pain neuroscience education (PNE) as a therapeutic approach for the management of fibromyalgia (FM). Methods A multicentre randomized, open-label, controlled trial was conducted to assess the effectiven
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad8e5e9a3dafbf226f9d16e884a6383e
http://hdl.handle.net/10810/51629
http://hdl.handle.net/10810/51629
Publikováno v:
Mathematics
Volume 8
Issue 10
Mathematics, Vol 8, Iss 1822, p 1822 (2020)
Volume 8
Issue 10
Mathematics, Vol 8, Iss 1822, p 1822 (2020)
Multi-objective optimization problems (MOPs) naturally arise in many applications. Since for such problems one can expect an entire set of optimal solutions, a common task in set based multi-objective optimization is to compute N solutions along the
Publikováno v:
GECCO Companion
Evolutionary algorithms are widely used for the treatment of multi-objective optimization problems due to their global nature, robustness, and their minimal assumptions on the model. In turn, it is widely accepted that they still need quite a few res
Autor:
MARIA DE LOURDES URIBE SOTO
Publikováno v:
Universidad Autónoma Metropolitana
UAM
Repositorio Institucional de la UAM Iztapalapa
UAM
Repositorio Institucional de la UAM Iztapalapa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b02bbed0e4d6dfaf113a852c952ef32
https://doi.org/10.24275/uami.cc08hf642
https://doi.org/10.24275/uami.cc08hf642
Publikováno v:
Advances in Dynamics, Optimization and Computation ISBN: 9783030512637
Evolutionary algorithms are very popular and are frequently applied to many different optimization problems. Reasons for this success include that methods of this kind are of global nature, very robust, and only require minimal assumptions on the opt
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d346ba5fd61dcaea9857514d028db36a
https://doi.org/10.1007/978-3-030-51264-4_15
https://doi.org/10.1007/978-3-030-51264-4_15
Autor:
Sergio Alvarado, Oliver Schütze, Honggang Wang, Víctor Adrián Sosa, Lourdes Uribe, Adriana Lara
Publikováno v:
Memetic Computing. 11:155-173
For the treatment of multi-objective optimization problems (MOPs) sto-chas-tic search algorithms such as multi-objective evolutionary algorithms (MOEAs) are very popular due to their global set based approach. Multi-objective stochastic local search
Publikováno v:
Swarm and Evolutionary Computation. 67:100938
Multi-objective evolutionary algorithms (MOEAs) are commonly applied to treat multi-objective optimization problems (MOPs) due to their global nature, robustness, and reliability. However, it is also well known that MOEAs need quite a few resources t