Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Lourdeaux, Alexandre"'
We show that algebraic groups of type $F_4$ (or equivalently Albert algebras) arising from the first Tits construction are determined uniquely by their $g_3$ invariant.
Comment: Theorem 11.1 is false : the kernel is not trivial as stated
Comment: Theorem 11.1 is false : the kernel is not trivial as stated
Externí odkaz:
http://arxiv.org/abs/2209.07447
Autor:
Lourdeaux, Alexandre
Based on the work of Conrad-Gabber-Prasad, the paper deals with the geometry of particular pseudo-semisimple groups, namely those which can be written as quotient of Weil restriction of semisimple groups. We establish that these groups are retract ra
Externí odkaz:
http://arxiv.org/abs/2011.14001
Autor:
Lourdeaux, Alexandre
Publikováno v:
Journal of Pure and Applied Algebra, vol 226 (10), 2022
The paper deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree $2$ invariants with coefficients $\mathbb{Q}/\mathbb{Z}(1)$, that is invariants taking values i
Externí odkaz:
http://arxiv.org/abs/2010.13842
Autor:
Lourdeaux, Alexandre
On revoit explicitement la construction ainsi que certaines propri\'et\'es des complexes de faisceaux \'etales $\mathbb{Q}/\mathbb{Z}(j)$ sur certains sch\'emas. Le but de ces notes est d'avoir une r\'ef\'erence pr\'ecise pour la conjecture de Gerste
Externí odkaz:
http://arxiv.org/abs/2010.09182
Autor:
Lourdeaux, Alexandre
Publikováno v:
In Journal of Pure and Applied Algebra October 2022 226(10)
Publikováno v:
In Journal of Algebra
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lourdeaux, Alexandre
Our article deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree 2 invariants with coefficients Q/Z(1), that is invariants taking values in the Brauer group.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::463ec789ef80280ed390f0e4353f82f8
https://hal.archives-ouvertes.fr/hal-02440601
https://hal.archives-ouvertes.fr/hal-02440601
Autor:
Lourdeaux, Alexandre
Publikováno v:
Théorie des groupes [math.GR]. Université de Lyon, 2020. Français. ⟨NNT : 2020LYSE1044⟩
Our thesis deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree 2 invariants with coefficients Q/Z(1), that is invariants taking values in the Brauer group. O
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::ed1571bf98bf9245918acac489fdb486
https://tel.archives-ouvertes.fr/tel-02890182/file/TH2020LOURDEAUXALEXANDRE.pdf
https://tel.archives-ouvertes.fr/tel-02890182/file/TH2020LOURDEAUXALEXANDRE.pdf
Autor:
Lourdeaux, Alexandre
Our article deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree 2 invariants with coefficients Q/Z(1), that is invariants taking values in the Brauer group.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::463ec789ef80280ed390f0e4353f82f8
https://hal.archives-ouvertes.fr/hal-02440601/document
https://hal.archives-ouvertes.fr/hal-02440601/document