Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Louppe G"'
Publikováno v:
A&A 668, A36 (2022)
The performance of high-contrast imaging instruments is limited by wavefront errors, in particular by non-common path aberrations (NCPAs). Focal-plane wavefront sensing (FPWFS) is appropriate to handle NCPAs because it measures the aberration where i
Externí odkaz:
http://arxiv.org/abs/2210.00632
Focal plane wavefront sensing (FPWFS) is appealing for several reasons. Notably, it offers high sensitivity and does not suffer from non-common path aberrations (NCPA). The price to pay is a high computational burden and the need for diversity to lif
Externí odkaz:
http://arxiv.org/abs/2106.04456
Autor:
Jackson, Kathryn J., Schmidt, Dirk, Vernet, Elise, Bissot, L., Milli, J., Choquet, E., Cantalloube, F., Delorme, P., Mouillet, D., Louppe, G., Absil, O.
Publikováno v:
Proceedings of SPIE; August 2024, Vol. 13097 Issue: 1 p130976I-130976I-14, 12966639p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cole, A., Forre, P., Louppe, G., Miller, B.K., Weniger, C., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 1, 129-143
Parametric stochastic simulators are ubiquitous in science, often featuring high-dimensional input parameters and/or an intractable likelihood. Performing Bayesian parameter inference in this context can be challenging. We present a neural simulation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::952aededcc57e16d949a557c3e575561
https://dare.uva.nl/personal/pure/en/publications/truncated-marginal-neural-ratio-estimation(e6f23068-5d5b-492f-8318-25195a90abdb).html
https://dare.uva.nl/personal/pure/en/publications/truncated-marginal-neural-ratio-estimation(e6f23068-5d5b-492f-8318-25195a90abdb).html
Autor:
Bokkers, L.A.R., Ambrogioni, L., Güçlü, U., Beuls, K., Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot, B., Lenaerts, T., Louppe, G., Eecke, P. van
Publikováno v:
Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), pp. 1-11
Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), 1-11. [S.l.] : [S.n.]
STARTPAGE=1;ENDPAGE=11;TITLE=Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019)
Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), 1-11. [S.l.] : [S.n.]
STARTPAGE=1;ENDPAGE=11;TITLE=Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019)
Item does not contain fulltext Previous research has shown the benefits of group equivariant convolutions for image recognition tasks. With this work we apply group equivariance to the segmentation of photovoltaic (PV) panel installations in aerial p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::11655e91a428524e8294690a03529962
https://hdl.handle.net/2066/215842
https://hdl.handle.net/2066/215842
Autor:
Ras, G.E.H., Ambrogioni, L., Güçlü, U., Gerven, M.A.J. van, Beuls, K., Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot, B., Lenaerts, T., Louppe, G., Eecke, P. van
Publikováno v:
Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), pp. 1-9
Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), 1-9
STARTPAGE=1;ENDPAGE=9;TITLE=Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019)
Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), 1-9
STARTPAGE=1;ENDPAGE=9;TITLE=Beuls, K.; Bogaerts, B.; Bontempi, G. (ed.), Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019)
Item does not contain fulltext 3D convolutional neural networks are difficult to train because they are parameter-expensive and data-hungry. To solve these problems we propose a simple technique for learning 3D convolutional kernels efficiently requi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::285e1917322bd6f9dc44ce8bd8c51292
https://hdl.handle.net/2066/213443
https://hdl.handle.net/2066/213443
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.