Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Loukaki, Maria"'
Autor:
Loukaki, Maria
Let $p$ be a prime number and $\zeta_p$ a primitive $p$-th root of unity. Chebotarev's theorem states that every square submatrix of the $p \times p$ matrix $(\zeta_p^{ij})_{i,j=0}^{p-1}$ is non-singular. In this paper we prove the same for principal
Externí odkaz:
http://arxiv.org/abs/2412.08600
We investigate number-theoretic properties of the collection of nilpotent injectors or nilpotent projectors containing certain subgroups of finite soluble (or ${\mathcal N}$-constrained) groups.
Externí odkaz:
http://arxiv.org/abs/2408.15622
Publikováno v:
Journal of Algebraic Combinatorics, 59, Pages 581-595, 2024
Given a finite abelian group $G$ and cyclic subgroups $A$, $B$, $C$ of $G$ of the same order, we find necessary and sufficient conditions for $A$, $B$, $C$ to admit a common transversal for the cosets they afford. For an arbitrary number of cyclic su
Externí odkaz:
http://arxiv.org/abs/2308.06559
Autor:
Aivazidis, Stefanos, Loukaki, Maria
Publikováno v:
Results in Mathematics 78, 161 (2023)
Let $G$ be a $p$-group. We denote by $\mathcal{X}_i(G)$ the intersection of all subgroups of $G$ having index $p^i$, for $i \leq \log_p(|G|)$. In this paper, the newly introduced series $\{\mathcal{X}_i(G)\}_i$ is investigated and a number of results
Externí odkaz:
http://arxiv.org/abs/2212.02217
Autor:
Loukaki, Maria
Publikováno v:
Australasian Journal of Combinatorics, Volume 86 (2023)
An $n \times m$ non-negative matrix with row sum $m$ and column sum $n$ is called doubly stochastic. We answer the problem of finding doubly stochastic matrices of smallest posible support for every $1
Externí odkaz:
http://arxiv.org/abs/2202.00639
Autor:
Aivazidis, Stefanos, Loukaki, Maria
Publikováno v:
J. Algebra 610, 818--830, (2022)
Given a $p$-group $G$ and a subgroup-closed class $\mathfrak{X}$, we associate with each $\mathfrak{X}$-subgroup $H$ certain quantities which count $\mathfrak{X}$-subgroups containing $H$ subject to further properties. We show in Theorem I that each
Externí odkaz:
http://arxiv.org/abs/2201.07504
Autor:
Loukaki, Maria
Publikováno v:
J. Pure Appl. Algebra 215, no.2, 154-160, (2011)
Let $U_n$ denote the group of upper $n \times n$ unitriangular matrices over a fixed finite field $\mathbb{F}$ of order $q$. That is, $U_n$ consists of upper triangular $n \times n$ matrices having every diagonal entry equal to $1$. It is known that
Externí odkaz:
http://arxiv.org/abs/2201.07071
Autor:
Loukaki, Maria
Publikováno v:
Isr. J. Math, 159, 93-107, (2007)
Berkovich, Chillag and Herzog characterized all finite groups $G$ in which all the nonlinear irreducible characters of $G$ have distinct degrees. In this paper we extend this result showing that a similar characterization holds for all finite solvabl
Externí odkaz:
http://arxiv.org/abs/2201.07062
Publikováno v:
Journal of Group Theory; Nov2024, Vol. 27 Issue 6, p1233-1285, 53p
Autor:
Loukaki, Maria
A finite group $G$ is called monomial if every irreducible character of $G$ is induced from a linear character of some subgroup of $G$. One of the main questions regarding monomial groups is whether or not a normal subgroup $N$ of a monomial group $G
Externí odkaz:
http://arxiv.org/abs/math/0412386