Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Louis-Hadrien Robert"'
Autor:
Louis-Hadrien Robert, Emmanuel Wagner
Publikováno v:
Quantum Topology
Quantum Topology, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
Quantum Topology, European Mathematical Society Publishing House, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
Quantum Topology, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
Quantum Topology, European Mathematical Society Publishing House, 2020, 11 (3), pp.411-487. ⟨10.4171/QT/139⟩
International audience; We give a purely combinatorial formula for evaluating closed, decorated foams. Our evaluation gives an integral polynomial and is directly connected to an integral, equivariant version of colored Khovanov-Rozansky link homolog
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41c2acf623b5a2723c793a6110ee2ef4
https://uca.hal.science/hal-04155421
https://uca.hal.science/hal-04155421
Autor:
Louis-Hadrien Robert, Mikhail Khovanov
The first two sections of the paper provide a convenient scheme and additional diagrammatics for working with Frobenius extensions responsible for key flavors of equivariant SL(2) link homology theories. The goal is to clarify some basic structures i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45a00be07196289f62ffaa7d6f284b63
Publikováno v:
Mathematical Programming
Mathematical Programming, 2021, 188 (1), pp.319-349. ⟨10.1007/s10107-020-01514-0⟩
Mathematical Programming, 2021, 188 (1), pp.319-349. ⟨10.1007/s10107-020-01514-0⟩
Box-totally dual integral (box-TDI) polyhedra are polyhedra described by systems which yield strong min-max relations. We characterize them in several ways, involving the notions of principal box-integer polyhedra and equimodular matrices. A polyhedr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7f2052c261afacab5d7fc77f3e92ba0
http://orbilu.uni.lu/handle/10993/46625
http://orbilu.uni.lu/handle/10993/46625
Autor:
Louis-Hadrien Robert, Mikhail Khovanov
Publikováno v:
Advances in Mathematics. 376:107433
We introduce and study combinatorial equivariant analogues of the Kronheimer–Mrowka homology theory for planar trivalent graphs.
Autor:
Catherine Gille, Louis-Hadrien Robert
Publikováno v:
Algebr. Geom. Topol. 18, no. 6 (2018), 3719-3747
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2018, 18 (6), pp.3719-3747. ⟨10.2140/agt.2018.18.3719⟩
Algebraic and Geometric Topology, 2018, 18 (6), pp.3719-3747. ⟨10.2140/agt.2018.18.3719⟩
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2018, 18 (6), pp.3719-3747. ⟨10.2140/agt.2018.18.3719⟩
Algebraic and Geometric Topology, 2018, 18 (6), pp.3719-3747. ⟨10.2140/agt.2018.18.3719⟩
We define some signature invariants for a class of knotted trivalent graphs using branched covers. We relate them to classical signatures of knots and links. Finally, we explain how to compute these invariants through the example of Kinoshita's knott
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b0e827522f1d15ff7b9fc34e1421c3f
https://projecteuclid.org/euclid.agt/1540605655
https://projecteuclid.org/euclid.agt/1540605655
Autor:
Louis-Hadrien Robert
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, 2015, 15 (3), pp.1303-1362. ⟨10.2140/agt.2015.15.1303⟩
Algebr. Geom. Topol. 15, no. 3 (2015), 1303-1362
Algebraic and Geometric Topology, 2015, 15 (3), pp.1303-1362. ⟨10.2140/agt.2015.15.1303⟩
Algebr. Geom. Topol. 15, no. 3 (2015), 1303-1362
After shortly recalling the construction of the Khovanov-Kuperberg algebras, we give a characterisation of indecomposable web-modules. It says that a web-module is indecomposable if and only if one can deduce it directly from the Kuperberg bracket (v
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0a8cfe28c3736e239032463a328e9c3
https://uca.hal.science/hal-04154090
https://uca.hal.science/hal-04154090
Autor:
Louis-Hadrien Robert
Publikováno v:
Journal of Knot Theory and Its Ramifications
Journal of Knot Theory and Its Ramifications, 2015, 24 (14), pp.1550070. ⟨10.1142/S0218216515500704⟩
Journal of Knot Theory and Its Ramifications, 2015, 24 (14), pp.1550070. ⟨10.1142/S0218216515500704⟩
The aim of this note is to take benefit of the foam nature of the Khovanov-Kuperberg algebras to compute the Grothendieck groups of their categories of finitely generated projective modules. The computation relies on the Hattori-Stallings trace and s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::266ea9735f6da9b95faf6b1ecd1f6bff
Autor:
Louis-Hadrien Robert
Publikováno v:
Journal of Knot Theory and Its Ramifications. 25:1650038
We give explicit resolutions of all finite-dimensional simple [Formula: see text]-modules. We use these resolutions to categorify the colored [Formula: see text]-invariant of framed links via a complex of complexes of graded [Formula: see text]-modul
Autor:
Louis-Hadrien Robert
Publikováno v:
Journal of Knot Theory and Its Ramifications
Journal of Knot Theory and Its Ramifications, 2013, 22 (11), pp.1350062. ⟨10.1142/S0218216513500624⟩
Journal of Knot Theory and Its Ramifications, 2013, 22 (11), pp.1350062. ⟨10.1142/S0218216513500624⟩
We recall a construction of Mackaay, Pan and Tubbenhauer of the algebras $K^{\epsilon}$ which allow to understand the $sl_3$ homology for links in a local way (i.e. for tangles). Then, by studying the combinatorics of the Kuperberg bracket, we give a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0dc14c16b4778563a4459a9bf4730634
http://arxiv.org/abs/1207.6287
http://arxiv.org/abs/1207.6287