Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Louis Funar"'
Autor:
Wolfgang Pitsch, Louis Funar
Publikováno v:
Bulletin de la Société mathématique de France. 148:515-527
We give alternative computations of the Schur multiplier of $Sp(2g,\mathbb Z/D\mathbb Z)$, when $D$ is divisible by 4 and $g\geq 4$: a first one using $K$-theory arguments based on the work of Barge and Lannes and a second one based on the Weil repre
Autor:
Louis Funar, Javier Aramayona
Publikováno v:
Bulletin of the London Mathematical Society
Bulletin of the London Mathematical Society, London Mathematical Society, 2019, 51 (3), pp.385-398. ⟨10.1112/blms.12236⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
Bulletin of the London Mathematical Society, London Mathematical Society, 2019, 51 (3), pp.385-398. ⟨10.1112/blms.12236⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
We study the quotient of the mapping class group $\operatorname{Mod}_g^n$ of a surface of genus $g$ with $n$ punctures, by the subgroup $\operatorname{Mod}_g^n[p]$ generated by the $p$-th powers of Dehn twists. Our first main result is that $\operato
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab21b1ea319ac2c5f98fb1c291a1db1a
https://hal.archives-ouvertes.fr/hal-01992036
https://hal.archives-ouvertes.fr/hal-01992036
Autor:
Louis Funar
Publikováno v:
Journal de l'Ecole Polytechnique
Journal de l'Ecole Polytechnique, Ecole Polytechnique, 2019, 6, pp.367-423. ⟨10.5802/jep.96⟩
Journal de l'Ecole Polytechnique, Ecole Polytechnique, 2019, 6, pp.367-423
Journal de l'Ecole Polytechnique, Ecole Polytechnique, 2019, 6, pp.367-423. ⟨10.5802/jep.96⟩
Journal de l'Ecole Polytechnique, Ecole Polytechnique, 2019, 6, pp.367-423
We prove that closed manifolds admitting a generic metric whose sectional curvature is locally quasi-constant are graphs of space forms. In the more general setting of QC spaces where sets of isotropic points are arbitrary, under suitable positivity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe47cb2024382c33588a7de16cd3cb3b
https://hal.archives-ouvertes.fr/hal-02330088
https://hal.archives-ouvertes.fr/hal-02330088
Autor:
Louis Funar, Maxime Nguyen
Publikováno v:
Mathematische Nachrichten. 289:1189-1207
The braided Thompson group is an asymptotic mapping class group of a sphere punctured along the standard Cantor set, endowed with a rigid structure. Inspired from the case of finite type surfaces we consider a Hatcher–Thurston cell complex whose ve
Autor:
Yurii Neretin, Louis Funar
Publikováno v:
Compositio Mathematica
Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (05), pp.1066-1110. ⟨10.1112/S0010437X18007066⟩
Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (05), pp.1066-1110. ⟨10.1112/S0010437X18007066⟩
The group of $\mathcal C^1$-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson's groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin's
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2a237ef822c75592a7661ea705d1272
https://hal.archives-ouvertes.fr/hal-01992012
https://hal.archives-ouvertes.fr/hal-01992012
Autor:
Louis Funar, Cornel Pintea
Publikováno v:
Michigan Mathematical Journal
Michigan Mathematical Journal, University of Michigan, 2018, 67 (3), pp.585-615. ⟨10.1307/mmj/1529460326⟩
Michigan Mathematical Journal, University of Michigan, 2018, 67, pp.585-615
Michigan Math. J. 67, iss. 3 (2018), 585-615
Michigan Mathematical Journal, University of Michigan, 2018, 67 (3), pp.585-615. ⟨10.1307/mmj/1529460326⟩
Michigan Mathematical Journal, University of Michigan, 2018, 67, pp.585-615
Michigan Math. J. 67, iss. 3 (2018), 585-615
We construct, for $m\geq 6$ and $2n\leq m$, closed manifolds $M^{m}$ with finite nonzero $\varphi(M^{m},S^{n}$), where $\varphi(M,N)$ denotes the minimum number of critical points of a smooth map $M\to N$. We also give some explicit families of examp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7eb7de240321bb04c5d1c1ac5063f7f4
https://hal.archives-ouvertes.fr/hal-01992044
https://hal.archives-ouvertes.fr/hal-01992044
Autor:
Pierre Lochak, Louis Funar
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2018, 360 (3), pp.1061-1082. ⟨10.1007/s00220-018-3126-8⟩
Communications in Mathematical Physics, Springer Verlag, 2018, 360 (3), pp.1061-1082. ⟨10.1007/s00220-018-3126-8⟩
Using quantum representations of mapping class groups we prove that profinite completions of Burnside-type surface group quotients are not virtually prosolvable, in general. Further, we construct infinitely many finite simple characteristic quotients
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16ece7e4b92d7cb44a5779948e4dc481
https://hal.archives-ouvertes.fr/hal-03001232/document
https://hal.archives-ouvertes.fr/hal-03001232/document
Autor:
Javier Aramayona, Louis Funar
Publikováno v:
Moscow Mathematical Journal
Moscow Mathematical Journal, Independent University of Moscow 2021, 21 (1), pp.1--29. ⟨10.17323/1609-4514-2021-21-1-1-29⟩
Moscow Math. J.
Moscow Math. J., In press
Digital.CSIC. Repositorio Institucional del CSIC
instname
Moscow Mathematical Journal, Independent University of Moscow 2021, 21 (1), pp.1--29. ⟨10.17323/1609-4514-2021-21-1-1-29⟩
Moscow Math. J.
Moscow Math. J., In press
Digital.CSIC. Repositorio Institucional del CSIC
instname
We introduce subgroups Bg
The first author was partially funded by grants RYC-2013-13008 and MTM2015-67781. He also acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 ”RNMS: Geometric Structures and
The first author was partially funded by grants RYC-2013-13008 and MTM2015-67781. He also acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 ”RNMS: Geometric Structures and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05942af90932b3d51c126cb4423672f1
http://arxiv.org/abs/1701.08132
http://arxiv.org/abs/1701.08132
Autor:
Louis Funar
Publikováno v:
Geom. Topol. 17, no. 4 (2013), 2289-2344
We show that there exist infinitely many pairs of non-homeomorphic closed oriented SOL torus bundles with the same quantum (TQFT) invariants. This follows from the arithmetic behind the conjugacy problem in $SL(2,\Z)$ and its congruence quotients, th
Autor:
Toshitake Kohno, Louis Funar
Publikováno v:
Geometriae Dedicata. 169:145-163
We consider subgroups of the braid groups which are generated by $$n$$ th powers of the standard generators and prove that any infinite intersection (with even $$n$$ ) is trivial. This is motivated by some conjectures of Squier concerning the kernels