Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Louahdi Khoudour"'
Autor:
Pascal Housam Salmane, Josué Manuel Rivera Velázquez, Louahdi Khoudour, Nguyen Anh Minh Mai, Pierre Duthon, Alain Crouzil, Guillaume Saint Pierre, Sergio A. Velastin
Publikováno v:
Sensors, Vol 23, Iss 6, p 3223 (2023)
Methods based on 64-beam LiDAR can provide very precise 3D object detection. However, highly accurate LiDAR sensors are extremely costly: a 64-beam model can cost approximately USD 75,000. We previously proposed SLS–Fusion (sparse LiDAR and stereo
Externí odkaz:
https://doaj.org/article/ece18662d398455a9e7316f994a894e3
Autor:
Josué Manuel Rivera Velázquez, Louahdi Khoudour, Guillaume Saint Pierre, Pierre Duthon, Sébastien Liandrat, Frédéric Bernardin, Sharon Fiss, Igor Ivanov, Raz Peleg
Publikováno v:
Journal of Imaging, Vol 8, Iss 11, p 306 (2022)
Object detection is recognized as one of the most critical research areas for the perception of self-driving cars. Current vision systems combine visible imaging, LIDAR, and/or RADAR technology, allowing perception of the vehicle’s surroundings. Ho
Externí odkaz:
https://doaj.org/article/b52f28fd6abb4a6da4c9ac6e24915ef8
Publikováno v:
IET Computer Vision, Vol 13, Iss 3, Pp 319-328 (2019)
Recognising human actions in untrimmed videos is an important challenging task. An effective three‐dimensional (3D) motion representation and a powerful learning model are two key factors influencing recognition performance. In this study, the auth
Externí odkaz:
https://doaj.org/article/1f3365a490d34a74858611b241adaa34
Publikováno v:
Sensors, Vol 21, Iss 20, p 6711 (2021)
The role of sensors such as cameras or LiDAR (Light Detection and Ranging) is crucial for the environmental awareness of self-driving cars. However, the data collected from these sensors are subject to distortions in extreme weather conditions such a
Externí odkaz:
https://doaj.org/article/d2dc450694fc4ce6942c0e19f71bfc05
Autor:
Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Sergio A. Velastin, and Pablo Zegers
Publikováno v:
Sensors, Vol 20, Iss 7, p 1825 (2020)
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from RGB sensors using simple cameras. The approach proceeds along two stages. In the first, a real-time 2D pose detector is run to determi
Externí odkaz:
https://doaj.org/article/01f92476c3f64c828d4ad9dfdf229748
Autor:
Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio A. Velastin
Publikováno v:
Sensors, Vol 19, Iss 8, p 1932 (2019)
Designing motion representations for 3D human action recognition from skeleton sequences is an important yet challenging task. An effective representation should be robust to noise, invariant to viewpoint changes and result in a good performance with
Externí odkaz:
https://doaj.org/article/98b12da522084f13ad7550442e10abec
Autor:
Nguyen Anh Minh Mai, Pierre Duthon, Pascal Housam Salmane, Louahdi Khoudour, Alain Crouzil, Sergio A. Velastin
Publikováno v:
2022 12th International Conference on Pattern Recognition Systems (ICPRS).
Publikováno v:
11th International Conference on Pattern Recognition Systems (ICPRS 2021)
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
Procedings in: 11th International Conference on Pattern Recognition Systems (ICPRS-21), conference paper, 17-19 mar, 2021, Universidad de Talca, Curicó, Chile. The ability to accurately detect and localize objects is recognized as being the most imp
Autor:
Houssam Salmane, Sergio A. Velastin, Pablo Zegers, Louahdi Khoudour, Huy Hieu Pham, Alain Crouzil
Publikováno v:
Sensors (Basel, Switzerland)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
Sensors
Sensors, MDPI, 2020, 20 (7), pp.1-15. ⟨10.3390/s20071825⟩
Volume 20
Issue 7
Sensors, Vol 20, Iss 7, p 1825 (2020)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
Sensors
Sensors, MDPI, 2020, 20 (7), pp.1-15. ⟨10.3390/s20071825⟩
Volume 20
Issue 7
Sensors, Vol 20, Iss 7, p 1825 (2020)
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from RGB sensors using simple cameras. The approach proceeds along two stages. In the first, a real-time 2D pose detector is run to determi
Autor:
Sergio A. Velastin, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Houssam Salmane, Huy Hieu Pham
Publikováno v:
ICIAR 2019: Image Analysis and Recognition
16th International Conference on Image Analysis and Recognition (ICIAR 2019can)
16th International Conference on Image Analysis and Recognition (ICIAR 2019can), Aug 2019, Waterloo, Canada. pp.18-32, ⟨10.1007/978-3-030-27202-9_2⟩
Lecture Notes in Computer Science ISBN: 9783030272012
ICIAR (1)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
16th International Conference on Image Analysis and Recognition (ICIAR 2019can)
16th International Conference on Image Analysis and Recognition (ICIAR 2019can), Aug 2019, Waterloo, Canada. pp.18-32, ⟨10.1007/978-3-030-27202-9_2⟩
Lecture Notes in Computer Science ISBN: 9783030272012
ICIAR (1)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
We present a new deep learning approach for real-time 3D human action recognition from skeletal data and apply it to develop a vision-based intelligent surveillance system. Given a skeleton sequence, we propose to encode skeleton poses and their moti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5651eedc97a088074cb0c2a18bdc295
https://hal.archives-ouvertes.fr/hal-02883879/document
https://hal.archives-ouvertes.fr/hal-02883879/document