Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Loris Di Cairano"'
Publikováno v:
Entropy, Vol 23, Iss 11, p 1414 (2021)
Different arguments led to supposing that the deep origin of phase transitions has to be identified with suitable topological changes of potential related submanifolds of configuration space of a physical system. An important step forward for this ap
Externí odkaz:
https://doaj.org/article/06ad8109ccea43a0850aee98ab9eb293
Autor:
Loris Di Cairano
Publikováno v:
Journal of physics communications 6(1), 015002-(2022). doi:10.1088/2399-6528/ac438d
Journal of physics communications 6(1), 015002 (2022). doi:10.1088/2399-6528/ac438d
Journal of physics communications 6(1), 015002 (2022). doi:10.1088/2399-6528/ac438d
Journal of physics communications 6(1), 015002 (2022). doi:10.1088/2399-6528/ac438d
Published by IOP Publishing Ltd., Bristol ; Philadelphia, PA
Published by IOP Publishing Ltd., Bristol ; Philadelphia, PA
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::772f36a9e0dfbfc30335663bd6b7421d
http://orbilu.uni.lu/handle/10993/53596
http://orbilu.uni.lu/handle/10993/53596
Autor:
Loris Di Cairano
Publikováno v:
Journal of physics / A 55(27), 27LT01-(2022). doi:10.1088/1751-8121/ac717d
We develop a geometric theory of phase transitions (PTs) for Hamiltonian systems in the microcanonical ensemble. Such a theory allows to rephrase the Bachmann’s classification of PTs for finite-size systems in terms of geometric properties of the e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cbc325bcefc1496596d68fbab01a7d2
Publikováno v:
Physical review / E 106(5), 054134 (2022). doi:10.1103/PhysRevE.106.054134
Physical Review E
Physical Review E, 2022, 106 (5), pp.054134. ⟨10.1103/PhysRevE.106.054134⟩
Physical Review E
Physical Review E, 2022, 106 (5), pp.054134. ⟨10.1103/PhysRevE.106.054134⟩
International audience; In this paper, a geometrical and thermodynamical analysis of the global properties of the potential energy landscape of a minimalistic model of a polypeptide is presented. The global geometry of the potential energy landscape
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d567c1c777ea45ceba6bbceb46a2f112
https://hdl.handle.net/2128/32606
https://hdl.handle.net/2128/32606
Publikováno v:
Entropy 23(11), 1414-(2021). doi:10.3390/e23111414
Entropy : an international and interdisciplinary journal of entropy and information studies 23(11), 1414 (2021). doi:10.3390/e23111414 special issue: "Special Issue "The Ubiquity of Entropy II" / Special Issue Editor: Dr. Roberto Franzosi, Guest Editor"
Entropy
Entropy, 2021, 23 (11), pp.1414. ⟨10.3390/e23111414⟩
Volume 23
Issue 11
Entropy, Vol 23, Iss 1414, p 1414 (2021)
Entropy : an international and interdisciplinary journal of entropy and information studies 23(11), 1414 (2021). doi:10.3390/e23111414 special issue: "Special Issue "The Ubiquity of Entropy II" / Special Issue Editor: Dr. Roberto Franzosi, Guest Editor"
Entropy
Entropy, 2021, 23 (11), pp.1414. ⟨10.3390/e23111414⟩
Volume 23
Issue 11
Entropy, Vol 23, Iss 1414, p 1414 (2021)
Different arguments led to supposing that the deep origin of phase transitions has to be identified with suitable topological changes of potential related submanifolds of configuration space of a physical system. An important step forward for this ap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d18445d099478f70a56d38105d70e4b6
http://orbilu.uni.lu/handle/10993/50206
http://orbilu.uni.lu/handle/10993/50206
Publikováno v:
Physica / D 422, 132909-(2021). doi:10.1016/j.physd.2021.132909
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena, 2021, 422, pp.132909. ⟨10.1016/j.physd.2021.132909⟩
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena, 2021, 422, pp.132909. ⟨10.1016/j.physd.2021.132909⟩
This paper tackles Hamiltonian chaos by means of elementary tools of Riemannian geometry. More precisely, a Hamiltonian flow is identified with a geodesic flow on configuration space–time endowed with a suitable metric due to Eisenhart. Until now,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d94a408a9c33792aad8d09bf62ecfdb1
https://juser.fz-juelich.de/record/904541
https://juser.fz-juelich.de/record/904541
Publikováno v:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Chaos: An Interdisciplinary Journal of Nonlinear Science, American Institute of Physics, 2019, 29 (12), pp.123134. ⟨10.1063/1.5119797⟩
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (12), pp.123134. ⟨10.1063/1.5119797⟩
Chaos: An Interdisciplinary Journal of Nonlinear Science, American Institute of Physics, 2019, 29 (12), pp.123134. ⟨10.1063/1.5119797⟩
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (12), pp.123134. ⟨10.1063/1.5119797⟩
International audience; By identifying Hamiltonian flows with geodesic flows of suitably chosen Riemannian manifolds, it is possible to explain the origin of chaos in classical Newtonian dynamics and to quantify its strength. There are several possib
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f18282020a5d398e59fd6f0eca095a9b
https://hal.archives-ouvertes.fr/hal-02161168/file/1906.08146.pdf
https://hal.archives-ouvertes.fr/hal-02161168/file/1906.08146.pdf