Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Lorenzo di Ruvo"'
Publikováno v:
Mathematics in Engineering, Vol 3, Iss 4, Pp 1-43 (2021)
The Kuramoto-Sinelshchikov equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking in account the combined influence of diffusion and thermal conduction of the gas o
Externí odkaz:
https://doaj.org/article/c9919eeccbd54932a1fd1bfbf7ba6298
Publikováno v:
AIMS Mathematics, Vol 4, Iss 3, Pp 437-462 (2019)
The short-pulse master mode-locking equation is a model for ultrafast pulse propagation in a mode-locked laser cavity in the few-femtosecond pulse regime, that is a nonlinear evolution equation. In this paper, we prove the wellposedness of the Cauchy
Externí odkaz:
https://doaj.org/article/b0ff7101d8d644448efd1beed2b6490a
Publikováno v:
Symmetry, Vol 14, Iss 8, p 1535 (2022)
The fifth order Kudryashov–Sinelshchikov equation models the evolution of the nonlinear waves in a gas–liquid mixture, taking into account an interphase heat transfer, surface tension, and weak liquid compressibility simultaneously at the derivat
Externí odkaz:
https://doaj.org/article/133048d2d67c46a5a4327b96dbb4a9c9
Publikováno v:
Symmetry, Vol 13, Iss 5, p 848 (2021)
We provide a lower bound for the blow up time of the H2 norm of the entropy solutions of the inviscid Burgers equation in terms of the H2 norm of the initial datum. This shows an interesting symmetry of the Burgers equation: the invariance of the spa
Externí odkaz:
https://doaj.org/article/0dd5217025e34c838012a16fd2594f23
Publikováno v:
Mathematics, Vol 8, Iss 10, p 1835 (2020)
The higher-order convective Cahn-Hilliard equation describes the evolution of crystal surfaces faceting through surface electromigration, the growing surface faceting, and the evolution of dynamics of phase transitions in ternary oil-water-surfactant
Externí odkaz:
https://doaj.org/article/f67e9d76804d45f1878aa0eb3ab119a9
Publikováno v:
Algorithms, Vol 13, Iss 7, p 170 (2020)
High order convective Cahn-Hilliard type equations describe the faceting of a growing surface, or the dynamics of phase transitions in ternary oil-water-surfactant systems. In this paper, we prove the well-posedness of the classical solutions for the
Externí odkaz:
https://doaj.org/article/1801fa5736a54c3db263d1b2c83ba9be
Publikováno v:
Algorithms, Vol 13, Iss 4, p 77 (2020)
The Kuramoto–Sinelshchikov–Velarde equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking into account the combined influence of diffusion and thermal conductio
Externí odkaz:
https://doaj.org/article/5e7d2a70129e429ea51b7a39d6013259
Publikováno v:
Mathematics, Vol 7, Iss 11, p 1006 (2019)
The continuum spectrum pulse equation is a third order nonlocal nonlinear evolutive equation related to the dynamics of the electrical field of linearly polarized continuum spectrum pulses in optical waveguides. In this paper, the well-posedness of t
Externí odkaz:
https://doaj.org/article/e41e8878464e47eda64849ad01e67772
Publikováno v:
Mathematical Modelling and Analysis, Vol 21, Iss 2 (2016)
We consider the generalized Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the scal
Externí odkaz:
https://doaj.org/article/5017468a15454e52b9faacb8beaab939
Publikováno v:
Contemporary Mathematics. :386-431
The Kuramoto-Sivashinsky equation with Ehrilch-Schwoebel effects models the evolution of surface morphology during Molecular Beam Epitaxy growth, provoked by an interplay between deposition of atoms onto the surface and the relaxation of the surface