Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Lorenzo J. Díaz"'
Publikováno v:
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2021, 22 (4), pp.1643-1672. ⟨10.2422/2036-2145.202001_014⟩
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2021, 22 (4), pp.1643-1672. ⟨10.2422/2036-2145.202001_014⟩
We prove that for some manifolds $M$ the set of robustly transitive partially hyperbolic diffeomorphisms of $M$ with one-dimensional nonhyperbolic centre direction contains a $C^1$-open and dense subset of diffeomorphisms with nonhyperbolic measures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62ddf962eb01bb97493302361811d3c3
https://hal.science/hal-03860928
https://hal.science/hal-03860928
Publikováno v:
Monatshefte für Mathematik. 190:441-479
We provide examples of transitive partially hyperbolic dynamics (specific but paradigmatic examples of homoclinic classes) which blend different types of hyperbolicity in the one-dimensional center direction. These homoclinic classes have two disjoin
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 169:507-545
We study $C^1$-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. {In dimension $3$, an important class of examples of
Autor:
Edgar Matias, Lorenzo J. Díaz
Publikováno v:
Mathematische Zeitschrift. 291:1543-1568
We study attracting graphs of step skew products from the topological and ergodic points of view where the usual contracting-like assumptions of the fiber dynamics are replaced by weaker merely topological conditions. In this context, we prove the ex
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 297:98-115
We review some ergodic and topological aspects of robustly transitive partially hyperbolic diffeomorphisms with one-dimensional center direction. We also discuss step skew-product maps whose fiber maps are defined on the circle which model such dynam
Autor:
Lorenzo J. Díaz
Publikováno v:
Proceedings of the International Congress of Mathematicians (ICM 2018).
Autor:
Sebastián A. Pérez, Lorenzo J. Díaz
Publikováno v:
New Trends in One-Dimensional Dynamics ISBN: 9783030168322
A blender-horseshoe is a locally maximal transitive hyperbolic set that appears in dimension at least three carrying a distinctive geometrical property: its local stable manifold “behaves” as a manifold of topological dimension greater than the e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::511b6f7643b0c5d51c95e3d1b4e810c3
https://doi.org/10.1007/978-3-030-16833-9_8
https://doi.org/10.1007/978-3-030-16833-9_8
Autor:
Lorenzo J. Díaz, Sebastián A. Pérez
In dimension three and under certain regularity assumptions, we construct a renormalisation scheme at the heterodimensional tangency of a non-transverse heterodimensional cycle associated with a pair of saddle-foci whose limit dynamic is a center-uns
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bda973dc5e728e018f90f3d61649fee8
http://arxiv.org/abs/1806.06409
http://arxiv.org/abs/1806.06409
Publikováno v:
Moscow Mathematical Journal
Moscow Mathematical Journal, Independent University of Moscow 2018, 18 (1), pp.15-61
Moscow mathematical journal
Moscow mathematical journal, 2018, 18 (1), pp.15-61. 〈http://www.mathjournals.org/mmj/2018-018-001/2018-018-001-002.html〉
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Moscow Mathematical Journal, Independent University of Moscow 2018, 18 (1), pp.15-61
Moscow mathematical journal
Moscow mathematical journal, 2018, 18 (1), pp.15-61. 〈http://www.mathjournals.org/mmj/2018-018-001/2018-018-001-002.html〉
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b927d11190762e3e940704a9bca35b1
https://hal.archives-ouvertes.fr/hal-01758598
https://hal.archives-ouvertes.fr/hal-01758598
Autor:
Lorenzo J. Díaz, Edgar Matias
We consider iterated functions systems (IFS) on compact metric spaces and introduce the concept of target sets. Such sets have very rich dynamical properties and play a similar role as semifractals introduced by Lasota and Myjak do for regular IFSs.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9186f4bf3586a52bc42e2c5a5adaf1f7