Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Lorenzo De Mattei"'
Publikováno v:
IJCoL, Vol 6, Iss 2, Pp 9-22 (2020)
We study how words are used differently in two Italian newspapers at opposite ends of the political spectrum by training embeddings on one newspaper’s corpus, updating the weights on the second one, and observing vector shifts. We run two types of
Externí odkaz:
https://doaj.org/article/1c1d181040114638a9dbaaffc724a82c
Autor:
Lorenzo De Mattei, Michele Cafagna, Huiyuan Lai, Felice Dell'Orletta, Malvina Nissim, Albert Gatt
Publikováno v:
University of Groningen
Proceedings of the 1st Workshop on Evaluating NLG Evaluation (EvalNLGEval'20)
Proceedings of the 1st Workshop on Evaluating NLG Evaluation (EvalNLGEval'20)
An ongoing debate in the NLG community concerns the best way to evaluate systems, with human evaluation often being considered the most reliable method, compared to corpus-based metrics. However, tasks involving subtle textual differences, such as st
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3e65bc0fb66780ce09da3f84f9aea01
http://arxiv.org/abs/2101.01634
http://arxiv.org/abs/2101.01634
Autor:
Alessio Miaschi, Marco Polignano, Graziella De Martino, Andrea Iovine, Lorenzo De Mattei, Giulia Rambelli
Publikováno v:
EVALITA
Over the last years, the rise of novel sentiment analysis techniques to assess aspect-based opinions on product reviews has become a key component for providing valuable insights to both consumers and businesses. To this extent, we propose ATE_ABSITA
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba86d413851c255659d677ad6ef24b4f
http://hdl.handle.net/11568/1112316
http://hdl.handle.net/11568/1112316
Publikováno v:
EVALITA Evaluation of NLP and Speech Tools for Italian ISBN: 9788831978422
EVALITA@CLiC-it
Scopus-Elsevier
EVALITA@CLiC-it
Scopus-Elsevier
In this paper we describe the system used for the participation to the ABSITA, GxG, HaSpeeDe and IronITA shared tasks of the EVALITA 2018 conference. We developed a classifier that can be configured to use Bidirectional Long Short Term Memories and l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c9c3264e25e14d439863cca81d48b78
https://doi.org/10.4000/books.aaccademia.4527
https://doi.org/10.4000/books.aaccademia.4527
Autor:
Felice Dell'Orletta, Lorenzo De Mattei, Benedetta Iavarone, Giulia Venturi, Dominique Brunato
Publikováno v:
EMNLP
Scopus-Elsevier
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1–10, Brussels, 31/10/2018-04/11/2018
info:cnr-pdr/source/autori:Brunato D., De Mattei L., Dell'Orletta F., Iavarone B., Venturi G./congresso_nome:Conference on Empirical Methods in Natural Language Processing (EMNLP)/congresso_luogo:Brussels/congresso_data:31%2F10%2F2018-04%2F11%2F2018/anno:2018/pagina_da:1/pagina_a:10/intervallo_pagine:1–10
Scopus-Elsevier
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1–10, Brussels, 31/10/2018-04/11/2018
info:cnr-pdr/source/autori:Brunato D., De Mattei L., Dell'Orletta F., Iavarone B., Venturi G./congresso_nome:Conference on Empirical Methods in Natural Language Processing (EMNLP)/congresso_luogo:Brussels/congresso_data:31%2F10%2F2018-04%2F11%2F2018/anno:2018/pagina_da:1/pagina_a:10/intervallo_pagine:1–10
In this paper, we present a crowdsourcing-based approach to model the human perception of sentence complexity. We collect a large corpus of sentences rated with judgments of complexity for two typologically-different languages, Italian and English. W
Publikováno v:
Scopus-Elsevier
We propose a generation task for Italian - more specifically, a style transfer task for headlines of Italian newspapers. This is the first shared task on generation included in the EVALITA evaluation framework. Indeed, one of the reasons to have this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee14e741ac79a2690311f8acb229911c
http://www.scopus.com/inward/record.url?eid=2-s2.0-85097568906&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85097568906&partnerID=MN8TOARS