Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Lorenz Hübschle-Schneider"'
Publikováno v:
High Performance Computing in Science and Engineering '21 ISBN: 9783031179365
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2eb0187114f4f3fa398a41f7f0a1111
https://doi.org/10.1007/978-3-031-17937-2_27
https://doi.org/10.1007/978-3-031-17937-2_27
Publikováno v:
SPAA
We consider communication-efficient weighted and unweighted (uniform) random sampling from distributed data streams presented as a sequence of mini-batches of items. This is a natural model for distributed streaming computation, and our goal is to sh
Autor:
Emanuel Schrade, Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Carsten Dachsbacher
Publikováno v:
ACM Transactions on Mathematical Software. 44:1-14
We consider the problem of sampling n numbers from the range { 1,… , N } without replacement on modern architectures. The main result is a simple divide-and-conquer scheme that makes sequential algorithms more cache efficient and leads to a paralle
Publikováno v:
Network science, 8 (4), 543-550
R-MAT (for Recursive MATrix) is a simple, widely used model for generating graphs with a power law degree distribution, a small diameter, and communitys structure. It is particularly attractive for generating very large graphs because edges can be ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bfbbd4a3e81c676cf5bb9a54f252abb1
http://arxiv.org/abs/1905.03525
http://arxiv.org/abs/1905.03525
Data structures for efficient sampling from a set of weighted items are an important building block of many applications. However, few parallel solutions are known. We close many of these gaps both for shared-memory and distributed-memory machines. W
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1861c1dd22ec721146678caaf3506a2a
Publikováno v:
IPDPS
We propose fast probabilistic algorithms with low (i.e., sublinear in the input size) communication volume to check the correctness of operations in Big Data processing frameworks and distributed databases. Our checkers cover many of the commonly use
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::164beeb237c28c84acdc0e57b95598da
https://publikationen.bibliothek.kit.edu/1000085585/36157773
https://publikationen.bibliothek.kit.edu/1000085585/36157773
Publikováno v:
IPDPS
We present scalable parallel algorithms with sublinear per-processor communication volume and low latency for several fundamental problems related to finding the most relevant elements in a set, for various notions of relevance: We begin with the cla
Publikováno v:
Experimental Algorithms ISBN: 9783319200859
SEA
SEA
We revisit tree compression with top trees (Bille et al, ICALP'13) and present several improvements to the compressor and its analysis. By significantly reducing the amount of information stored and guiding the compression step using a RePair-inspire
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43c362cdfd0b6cf59572e3451c9de1e2
https://publikationen.bibliothek.kit.edu/1000053045/15925947
https://publikationen.bibliothek.kit.edu/1000053045/15925947