Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Lopes, Helena J. Nussenzveig"'
Sharp conditions for energy balance in two-dimensional incompressible ideal flow with external force
Smooth solutions of the forced incompressible Euler equations satisfy an energy balance, where the rate-of-change in time of the kinetic energy equals the work done by the force per unit time. Interesting phenomena such as turbulence are closely link
Externí odkaz:
http://arxiv.org/abs/2404.12572
We consider the three-dimensional Navier-Stokes equations, with initial data having second derivatives in the space of pseudomeasures. Solutions of this system with such data have been shown to exist previously by Cannone and Karch. As the Navier-Sto
Externí odkaz:
http://arxiv.org/abs/2402.01038
We prove existence of solutions to the Kuramoto-Sivashinsky equation with low-regularity data, in function spaces based on the Wiener algebra and in pseudomeasure spaces. In any spatial dimension, we allow the data to have its antiderivative in the W
Externí odkaz:
http://arxiv.org/abs/2308.08078
Autor:
Kelliher, James P., Lacave, Christophe, Filho, Milton C. Lopes, Lopes, Helena J. Nussenzveig, Titi, Edriss S.
We study the three-dimensional incompressible Navier-Stokes equations in a smooth bounded domain $\Omega$ with initial velocity $u_0$ square-integrable, divergence-free and tangent to $\partial \Omega$. We supplement the equations with the Navier fri
Externí odkaz:
http://arxiv.org/abs/2303.03489
We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier-Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in $L^p$ for some
Externí odkaz:
http://arxiv.org/abs/2007.01091
In this paper, we are concerned with the vanishing viscosity problem for the three-dimensional Navier-Stokes equations with helical symmetry, in the whole space. We choose viscosity-dependent initial $\bu_0^\nu$ with helical swirl, an analogue of the
Externí odkaz:
http://arxiv.org/abs/1706.10012
Autor:
Gie, Gung-Min, Kelliher, James P., Filho, Milton C. Lopes, Mazzucato, Anna L., Lopes, Helena J. Nussenzveig
The focus of this paper is on the analysis of the boundary layer and the associated vanishing viscosity limit for two classes of flows with symmetry, namely, Plane-Parallel Channel Flows and Parallel Pipe Flows. We construct explicit boundary layer c
Externí odkaz:
http://arxiv.org/abs/1706.06039
The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: $\alpha > 0$, corresponding to the elastic response, and $\nu > 0$, corresponding to viscosity. Formally setting these parameters to $0$ reduces the equations
Externí odkaz:
http://arxiv.org/abs/1412.6587
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Motivated by the presence of a finite number of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages for dissipative dynamical systems, we present a continuous data assimilation algorithm for the three-dimension
Externí odkaz:
http://arxiv.org/abs/1408.5470