Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Longting Wu"'
Publikováno v:
Forum of Mathematics, Pi, Vol 9 (2021)
We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambd
Externí odkaz:
https://doaj.org/article/92d06f43f7f64259a52fe988722907a5
Autor:
Honglu Fan, Longting Wu
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, 2021 (13)
International Mathematics Research Notices, 2021 (13)
We derive a recursive formula for certain relative Gromov–Witten invariants with a maximal tangency condition via the Witten–Dijkgraaf–Verlinde–Verlinde equation. For certain relative pairs, we get explicit formulae of invariants using the re
Publikováno v:
Forum of Mathematics, Pi
We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambd
Publikováno v:
Journal of the London Mathematical Society
Journal of the London Mathematical Society, 103 (4)
Journal of the London Mathematical Society, 103 (4)
We extend the definition of relative Gromov–Witten invariants with negative contact orders to all genera. Then we show that relative Gromov–Witten theory forms a partial CohFT. Some cycle relations on the moduli space of stable maps are also prov
Publikováno v:
Journal of Topology
In this paper, we define genus-zero relative Gromov--Witten invariants with negative contact orders. Using this, we construct relative quantum cohomology rings and Givental formalism. A version of Virasoro constraints also follows from it.
44 pa
44 pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db9995307f8db787b144c6a8c8637078
http://arxiv.org/abs/1810.06952
http://arxiv.org/abs/1810.06952
Publikováno v:
Forum of Mathematics, Pi; 5/3/2021, Vol. 9, p1-57, 57p
Autor:
Longting Wu
The purpose of the article is to give a proof of a conjecture of Maulik and Pandharipande for genus 2 and 3. As a result, it gives a way to determine Gromov-Witten invariants of the quintic threefold for genus 2 and 3.
Comment: We improve our re
Comment: We improve our re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6054f1a60f0133d6f9506d65688f7e6
http://arxiv.org/abs/1705.06402
http://arxiv.org/abs/1705.06402
Autor:
Gross, Mark1 (AUTHOR) mgross@dpmms.cam.ac.uk, Siebert, Bernd2 (AUTHOR)
Publikováno v:
Inventiones Mathematicae. Sep2022, Vol. 229 Issue 3, p1101-1202. 102p.
Publikováno v:
Journal of South China Agricultural University; 2023, Vol. 44 Issue 6, p881-888, 8p