Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Longhi, Ignazio"'
Autor:
Bandini, Andrea, Longhi, Ignazio
Let $\ell$ and $p$ be distinct primes, and let $\Gamma$ be an abelian pro-$p$-group. We study the structure of the algebra $\Lambda:=\mathbb{Z}_\ell[[\Gamma]]$ and of $\Lambda$-modules. In the case $\Gamma\simeq \mathbb{Z}_p^d$, we consider a $\mathb
Externí odkaz:
http://arxiv.org/abs/2312.04666
Special kinds of continued fractions have been proved to converge to transcendental real numbers by means of the celebrated Subspace Theorem. In this paper we study the analogous $p$--adic problem. More specifically, we deal with Browkin $p$--adic co
Externí odkaz:
http://arxiv.org/abs/2302.04017
We provide a construction which covers as special cases many of the topologies on integers one can find in the literature. Moreover, our analysis of the Golomb and Kirch topologies inserts them in a family of connected, Hausdorff topologies on $\math
Externí odkaz:
http://arxiv.org/abs/2202.13478
Autor:
Demangos, Luca, Longhi, Ignazio
Let $D$ be the ring of $S$-integers in a global field and $\hat{D}$ its profinite completion. We discuss the relation between density in $D$ and the Haar measure of $\hat{D}$: in particular, we ask when the density of a subset $X$ of $D$ is equal to
Externí odkaz:
http://arxiv.org/abs/2009.04229
Publikováno v:
Alg. Number Th. 15 (2021) 863-907
Let $A$ be an abelian variety over a global function field $K$ of characteristic $p$. We study the $\mu$-invariant appearing in the Iwasawa theory of $A$ over the unramified $\mathbb{Z}_p$-extension of $K$. Ulmer suggests that this invariant is equal
Externí odkaz:
http://arxiv.org/abs/1909.00511
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove an Iwasawa Main Conjecture for the class group of the $\mathfrak{p}$-cyclotomic extension $\mathcal{F}$ of the function field $\mathbb{F}_q(\theta)$ ($\mathfrak{p}$ is a prime of $\mathbb{F}_q[\theta]\,$), showing that its Fitting ideal is g
Externí odkaz:
http://arxiv.org/abs/1412.5957
We prove the Iwasawa main conjecture over the arithmetic $\mathbb{Z}_p$-extension for semistable abelian varieties over function fields of characteristic $p>0$.
Comment: arXiv admin note: substantial text overlap with arXiv:1205.5945
Comment: arXiv admin note: substantial text overlap with arXiv:1205.5945
Externí odkaz:
http://arxiv.org/abs/1406.6128
We prove a functional equation for two projective systems of finite abelian $p$-groups, $\{\fa_n\}$ and $\{\fb_n\}$, endowed with an action of $\ZZ_p^d$ such that $\fa_n$ can be identified with the Pontryagin dual of $\fb_n$ for all $n$. Let $K$ be a
Externí odkaz:
http://arxiv.org/abs/1406.5815