Zobrazeno 1 - 10
of 1 722
pro vyhledávání: '"Long-Time behavior"'
Autor:
Changjian Wang, Jiayue Zhu
Publikováno v:
Electronic Research Archive, Vol 32, Iss 3, Pp 2180-2202 (2024)
In this manuscript, the following chemotaxis system has been considered: $ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \nabla\cdot(\phi(v)\nabla v-\varphi(v)\nabla w_{1}+\psi(v)\nabla w_{2})+av-bv^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5m
Externí odkaz:
https://doaj.org/article/fac3b42f8c8845e186e268120ab15f67
Publikováno v:
Mathematical Modelling and Control, Vol 4, Iss 1, Pp 1-8 (2024)
This paper is concerned with the spreading properties for a reaction-diffusion equation with free boundary condition. We obtained a complete description of the long-time dynamical behavior of this problem. By introducing a parameter $ \sigma $ in the
Externí odkaz:
https://doaj.org/article/9ab45cbf0eef417da8bd966294498ca7
Convergence of smooth solutions to parabolic equations with an oblique derivative boundary condition
Autor:
Hongmei Li
Publikováno v:
AIMS Mathematics, Vol 9, Iss 2, Pp 2824-2853 (2024)
In this paper, the parabolic equation with oblique derivative boundary condition is considered. The long time behavior of the solution is derived by selecting the appropriate auxiliary functions and making priori estimates. Through blow up analysis,
Externí odkaz:
https://doaj.org/article/42f83bd4194c478bb802e3c81bd05818
Publikováno v:
Electronic Research Archive, Vol 31, Iss 9, Pp 5406-5424 (2023)
In this paper, we study initial boundary value problems for the following fully nonlocal Boussinesq equation $ _0^{C}D_{t}^{\beta}u+(-\Delta)^{\sigma}u+(-\Delta)^{\sigma}{_0^{C}D_{t}^{\beta}}u = -(-\Delta)^{\sigma}f(u) $ with spectral fractiona
Externí odkaz:
https://doaj.org/article/acd24fe55bdd4576bb323d2e9994db3e
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 11, Pp 1-21 (2023)
This paper is devoted to studying the following quasilinear parabolic-elliptic-elliptic chemotaxis system \begin{equation*} \begin{cases} u_{t}=\nabla\cdot(\varphi(u)\nabla u-\psi(u)\nabla v)+au-bu^{\gamma},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0=\De
Externí odkaz:
https://doaj.org/article/8928434681064cba84ba730be441bff2
Autor:
Hongyun Peng, Kun Zhao
Publikováno v:
Mathematical Biosciences and Engineering, Vol 20, Iss 5, Pp 7802-7827 (2023)
Stability of steady state solutions associated with initial and boundary value problems of a coupled fluid-reaction-diffusion system in one space dimension is analyzed. It is shown that under Dirichlet-Dirichlet type boundary conditions, non-trivial
Externí odkaz:
https://doaj.org/article/effdcf926f3e4d9fb7ed0bb38211197b
Autor:
Yaqing Sun, Daoyin He
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-11 (2022)
Abstract We study the scattering theory of solutions to the quasilinear wave equations with null conditions and small initial data in two dimensions. Based on the scattering profile that was described precisely in He–Liu–Wang (J. Differ. Equ. 269
Externí odkaz:
https://doaj.org/article/94f94daf568042ddadb3de18b2688efb
Publikováno v:
Electronic Research Archive, Vol 30, Iss 12, Pp 4530-4552 (2022)
We study the global dynamics of large amplitude classical solutions to a system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, subject to time-dependent boundary conditions. The model is supplemented with $ H^2 $ initi
Externí odkaz:
https://doaj.org/article/c0431c38bb0a4820930286f7e28c3cbc
Publikováno v:
Mathematics, Vol 12, Iss 6, p 895 (2024)
We study the Cauchy problem for differential–difference parabolic equations with potentials undergoing translations with respect to the spatial-independent variable. Such equations are used for the modeling of various phenomena not covered by the c
Externí odkaz:
https://doaj.org/article/3c33fd94da6741b69dbe70639f5a512d