Zobrazeno 1 - 10
of 1 065 387
pro vyhledávání: '"Long, A. A."'
Autor:
Huang, Ziwei, He, Wanggui, Long, Quanyu, Wang, Yandi, Li, Haoyuan, Yu, Zhelun, Shu, Fangxun, Chen, Long, Jiang, Hao, Gan, Leilei
Evaluating the quality of synthesized images remains a significant challenge in the development of text-to-image (T2I) generation. Most existing studies in this area primarily focus on evaluating text-image alignment, image quality, and object compos
Externí odkaz:
http://arxiv.org/abs/2412.04300
Autor:
Chen, Jing, Chen, Ji-Yuan, Chen, Jun-Feng, Chen, Xiang, Fu, Chang-Bo, Guo, Jun, Guo, Yi-Han, Khaw, Kim Siang, Li, Jia-Lin, Li, Liang, Li, Shu, Lin, Yu-ming, Liu, Dan-Ning, Liu, Kang, Liu, Kun, Liu, Qi-Bin, Liu, Zhi, Lu, Ze-Jia, Lv, Meng, Song, Si-Yuan, Sun, Tong, Tang, Jian-Nan, Wan, Wei-Shi, Wang, Dong, Wang, Xiao-Long, Wang, Yu-Feng, Wang, Zhen, Wang, Zi-Rui, Wu, Wei-Hao, Yang, Hai-Jun, Yang, Lin, Yang, Yong, Yu, Dian, Yuan, Rui, Zhang, Jun-Hua, Zhang, Yu-Lei, Zhang, Yun-Long, Zhao, Zhi-Yu, Zhou, Bai-Hong, Zhu, Chun-Xiang, Zhu, Xu-Liang, Zhu, Yi-Fan
DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High re
Externí odkaz:
http://arxiv.org/abs/2411.09345
We study the three-dimensional Carrollian field theory on the Rindler horizon which is dual to a bulk massless scalar field theory in the four-dimensional Rindler wedge. The Carrollian field theory could be mapped to a two-dimensional Euclidean field
Externí odkaz:
http://arxiv.org/abs/2410.20372
Autor:
Ma, Xiao-Ping, Zhang, Lu, Wang, Wen-Tao, Nie, Jing-Zhe, Tian, Huan-Fang, Wu, Shi-Long, Sun, Shuai-Shuai, Xia, Tian-Long, Li, Jun, Li, Jian-Qi, Yang, Huai-Xin
Employing aberration-corrected scanning transmission electron microscopy (STEM), we meticulously investigated the intrinsic chemical heterogeneity of Fe1+yTe, Fe1+yTe0.8Se0.2, and Fe1+yTe0.5Se0.5. Comprehensive analysis reveals the presence of inters
Externí odkaz:
http://arxiv.org/abs/2410.03121
Autor:
XENON Collaboration, Aprile, E., Aalbers, J., Abe, K., Maouloud, S. Ahmed, Althueser, L., Andrieu, B., Angelino, E., Martin, D. Antón, Arneodo, F., Baudis, L., Bazyk, M., Bellagamba, L., Biondi, R., Bismark, A., Boese, K., Brown, A., Bruno, G., Budnik, R., Cai, C., Capelli, C., Cardoso, J. M. R., Chávez, A. P. Cimental, Colijn, A. P., Conrad, J., Cuenca-García, J. J., D'Andrea, V., Garcia, L. C. Daniel, Decowski, M. P., Deisting, A., Di Donato, C., Di Gangi, P., Diglio, S., Eitel, K., Morabit, S. el, Elykov, A., Ferella, A. D., Ferrari, C., Fischer, H., Flehmke, T., Flierman, M., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Galloway, M., Gao, F., Ghosh, S., Giacomobono, R., Glade-Beucke, R., Grandi, L., Grigat, J., Guan, H., Guida, M., Gyorgy, P., Hammann, R., Higuera, A., Hils, C., Hoetzsch, L., Hood, N. F., Iacovacci, M., Itow, Y., Jakob, J., Joerg, F., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Kobayashi, M., Koke, D., Kopec, A., Landsman, H., Lang, R. F., Levinson, L., Li, I., Li, S., Liang, S., Lin, Y. -T., Lindemann, S., Lindner, M., Liu, K., Liu, M., Loizeau, J., Lombardi, F., Long, J., Lopes, J. A. M., Luce, T., Ma, Y., Macolino, C., Mahlstedt, J., Mancuso, A., Manenti, L., Marignetti, F., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Melchiorre, A., Merz, J., Messina, M., Michael, A., Miuchi, K., Molinario, A., Moriyama, S., Morá, K., Mosbacher, Y., Murra, M., Müller, J., Ni, K., Oberlack, U., Paetsch, B., Pan, Y., Pellegrini, Q., Peres, R., Peters, C., Pienaar, J., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qin, J., García, D. Ramírez, Rajado, M., Singh, R., Sanchez, L., Santos, J. M. F. dos, Sarnoff, I., Sartorelli, G., Schreiner, J., Schulte, P., Eißing, H. Schulze, Schumann, M., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Shi, S., Shi, J., Silva, M., Simgen, H., Szyszka, C., Takeda, A., Takeuchi, Y., Tan, P. -L., Thers, D., Toschi, F., Trinchero, G., Tunnell, C. D., Tönnies, F., Valerius, K., Vecchi, S., Vetter, S., Solar, F. I. Villazon, Volta, G., Weinheimer, C., Weiss, M., Wenz, D., Wittweg, C., Wu, V. H. S., Xing, Y., Xu, D., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yuan, L., Zavattini, G., Zhong, M.
Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equ
Externí odkaz:
http://arxiv.org/abs/2412.05264
Autor:
Zhu, Hanqing, Zhang, Zhenyu, Cong, Wenyan, Liu, Xi, Park, Sem, Chandra, Vikas, Long, Bo, Pan, David Z., Wang, Zhangyang, Lee, Jinwon
Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and thr
Externí odkaz:
http://arxiv.org/abs/2412.05270
Collaboration is a cornerstone of society. In the real world, human teammates make use of multi-sensory data to tackle challenging tasks in ever-changing environments. It is essential for embodied agents collaborating in visually-rich environments re
Externí odkaz:
http://arxiv.org/abs/2412.05255
Autor:
Li, Yanyang, Wong, Tin Long, Hung, Cheung To, Zhao, Jianqiao, Zheng, Duo, Liu, Ka Wai, Lyu, Michael R., Wang, Liwei
Recent advances in large language models (LLMs) have shown significant promise, yet their evaluation raises concerns, particularly regarding data contamination due to the lack of access to proprietary training data. To address this issue, we present
Externí odkaz:
http://arxiv.org/abs/2412.04947
Memecoins, driven by social media engagement and cultural narratives, have rapidly grown within the Web3 ecosystem. Unlike traditional cryptocurrencies, they are shaped by humor, memes, and community sentiment. This paper introduces the Coin-Meme dat
Externí odkaz:
http://arxiv.org/abs/2412.04913
Autor:
Hu, Peiyan, Wang, Rui, Zheng, Xiang, Zhang, Tao, Feng, Haodong, Feng, Ruiqi, Wei, Long, Wang, Yue, Ma, Zhi-Ming, Wu, Tailin
Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due
Externí odkaz:
http://arxiv.org/abs/2412.04833