Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Lomelí, H. E."'
Autor:
Lomeli, H. E., Meiss, J. D.
Poncelet maps are circle maps constructed geometrically for a pair of nested ellipses; they are related to the classic billiard map on an elliptical domain when the orbit has an elliptical caustic. Here we show how the rotation number of the elliptic
Externí odkaz:
http://arxiv.org/abs/2309.08013
Publikováno v:
Nonlinearity 25, 1709-1733 (2012)
We study diffeomorphisms that have one-parameter families of continuous symmetries. For general maps, in contrast to the symplectic case, existence of a symmetry no longer implies existence of an invariant. Conversely, a map with an invariant need no
Externí odkaz:
http://arxiv.org/abs/1111.3887
Autor:
Lomelí, H. E., Meiss, J. D.
Publikováno v:
Nonlinearity 22: 1761-1789 (2009)
We study exact, volume-preserving diffeomorphisms that have heteroclinic connections between a pair of normally hyperbolic invariant manifolds. We develop a general theory of lobes, showing that the lobe volume is given by an integral of a generating
Externí odkaz:
http://arxiv.org/abs/0812.1810
Autor:
Lomelí, H. E., Meiss, J. D.
Publikováno v:
Disc. Cont. Dyn. Sys. Series S 2(2): 361-377 (2009)
We study the group of volume-preserving diffeomorphisms on a manifold. We develop a general theory of implicit generating forms. Our results generalize the classical formulas for generating functions of symplectic twist maps.
Comment: laTeX, 20
Comment: laTeX, 20
Externí odkaz:
http://arxiv.org/abs/0803.4350
We study perturbations of diffeomorphisms that have a saddle connection between a pair of normally hyperbolic invariant manifolds. We develop a first-order deformation calculus for invariant manifolds and show that a generalized Melnikov function or
Externí odkaz:
http://arxiv.org/abs/0706.2515
Autor:
Lomeli, H. E., Meiss, J. D.
Publikováno v:
Nonlinearity 16(5): 1573-1595 (2003)
We develop a Melnikov method for volume-preserving maps with codimension one invariant manifolds. The Melnikov function is shown to be related to the flux of the perturbation through the unperturbed invariant surface. As an example, we compute the Me
Externí odkaz:
http://arxiv.org/abs/nlin/0211027
Autor:
Lomeli, H. E., Meiss, J. D.
Publikováno v:
Phys. Lett. A 269(5-6): 309-318 (2000)
Explicit formulae are given for the saddle connection of an integrable family of standard maps studied by Y. Suris. When the map is perturbed this connection is destroyed, and we use a discrete version of Melnikov's method to give an explicit formula
Externí odkaz:
http://arxiv.org/abs/chao-dyn/9910010
Autor:
Lomeli, H. E., Meiss, J. D.
Publikováno v:
Nonlinearity 11(3): 557-574 (1998)
We study quadratic, volume preserving diffeomorphisms whose inverse is also quadratic. Such maps generalize the Henon area preserving map and the family of symplectic quadratic maps studied by Moser. In particular, we investigate a family of quadrati
Externí odkaz:
http://arxiv.org/abs/chao-dyn/9706001
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.