Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Lockwood, Glenn K."'
Autor:
Isakov, Mihailo, Currier, Mikaela, del Rosario, Eliakin, Madireddy, Sandeep, Balaprakash, Prasanna, Carns, Philip, Ross, Robert B., Lockwood, Glenn K., Kinsy, Michel A.
I/O efficiency is crucial to productivity in scientific computing, but the increasing complexity of the system and the applications makes it difficult for practitioners to understand and optimize I/O behavior at scale. Data-driven machine learning-ba
Externí odkaz:
http://arxiv.org/abs/2204.08180
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Koo, Donghun, Lee, Jaehwan, Liu, Jialin, Byun, Eun-Kyu, Kwak, Jae-Hyuck, Lockwood, Glenn K., Hwang, Soonwook, Antypas, Katie, Wu, Kesheng, Eom, Hyeonsang
Publikováno v:
In Journal of Parallel and Distributed Computing February 2021 148:96-108
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Nuclear Materials November 2012 430(1-3):239-245
Publikováno v:
In Journal of Nuclear Materials 2010 400(1):73-78
Autor:
Lockwood, Glenn K, Lozinskiy, Kirill, Gerhardt, Lisa, Cheema, Ravi, Hazen, Damian, Wright, Nicholas J
New experimental and AI-driven workloads are moving into the realm of extreme-scale HPC systems at the same time that high-performance flash is becoming cost-effective to deploy at scale. This confluence poses a number of new technical and economic c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2a9ff3e7087d5ef09c9888b1fda769ce
https://escholarship.org/uc/item/4wn1341d
https://escholarship.org/uc/item/4wn1341d
Autor:
Bard, Debbie, Bhimji, Wahid, Paul, David, Lockwood, Glenn K, Wright, Nicholas J, Antypas, Katie, Prabhat, Prabhat, Farrell, Steve, Ovsyannikov, Andrey, Romanus, Melissa, Van Straalen, Brian, Trebotich, David, Weber, Guenter
Publikováno v:
Bard, Debbie; Bhimji, Wahid; Paul, David; Lockwood, Glenn K; Wright, Nicholas J; Antypas, Katie; et al.(2016). Experiences with the Burst Buffer at NERSC:. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. Retrieved from: http://www.escholarship.org/uc/item/3ws838j6
NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::41f1c5886bba872f6cc3f9592cb76daf
http://www.escholarship.org/uc/item/3ws838j6
http://www.escholarship.org/uc/item/3ws838j6
Autor:
Lockwood, Glenn K, Yoo, Wucherl, Byna, Suren, Wright, Nicholas J, Snyder, Shane, Harms, Kevin, Nault, Zachary, Carns, Philip
I/O efficiency is essential to productivity in scientific computing, especially as many scientific domains become more data-intensive. Many characterization tools have been used to elucidate specific aspects of parallel I/O performance, but analyzing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::0fda1dfc1eb9f6b41b50061253fc36f3
https://escholarship.org/uc/item/9w08q3w0
https://escholarship.org/uc/item/9w08q3w0