Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Ljubisa Miskovic"'
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-14 (2024)
Abstract Devising genetic interventions for desired cellular phenotypes remains challenging regarding time and resources. Kinetic models can accelerate this task by simulating metabolic responses to genetic perturbations. However, exhaustive design e
Externí odkaz:
https://doaj.org/article/e2d058709289411ca01d92c0c43edc2f
Autor:
Omid Oftadeh, Pierre Salvy, Maria Masid, Maxime Curvat, Ljubisa Miskovic, Vassily Hatzimanikatis
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
Formulating metabolic networks mathematically can help researchers study metabolic diseases and optimize the production of industrially important molecules. Here, the authors propose a framework that allows to model eukaryotic metabolism considering
Externí odkaz:
https://doaj.org/article/6a2e860a1f4d4e6f8e04de3cbd18266b
Publikováno v:
Biotechnology for Biofuels, Vol 13, Iss 1, Pp 1-19 (2020)
Abstract Background Pseudomonas putida is a promising candidate for the industrial production of biofuels and biochemicals because of its high tolerance to toxic compounds and its ability to grow on a wide variety of substrates. Engineering this orga
Externí odkaz:
https://doaj.org/article/cf4f4196a98846cdbf03144646c8719c
Autor:
Ljubisa Miskovic, Susanne Alff-Tuomala, Keng Cher Soh, Dorothee Barth, Laura Salusjärvi, Juha-Pekka Pitkänen, Laura Ruohonen, Merja Penttilä, Vassily Hatzimanikatis
Publikováno v:
Biotechnology for Biofuels, Vol 10, Iss 1, Pp 1-19 (2017)
Abstract Background Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consi
Externí odkaz:
https://doaj.org/article/c9652f4332db4734b2878d12ad75ef70
Publikováno v:
PLoS Computational Biology, Vol 15, Iss 8, p e1007242 (2019)
A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from differen
Externí odkaz:
https://doaj.org/article/cb999c274e5845f08fe3a15966e8750a
Generating large omics datasets has become routine practice to gain insights into cellular processes, yet deciphering such massive datasets and determining intracellular metabolic states remains challenging. Kinetic models of metabolism play a critic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::262c0d15fcf52923959b6e0ef88c565b
https://doi.org/10.1101/2023.02.21.529387
https://doi.org/10.1101/2023.02.21.529387
Increased availability of multi-omics data has facilitated the characterization of metabolic phenotypes of cellular organisms. However, devising genetic interventions that drive cellular organisms toward the desired phenotype remains challenging in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1063949087ccd9f7587042f7d1f465f0
https://doi.org/10.1101/2022.11.14.516382
https://doi.org/10.1101/2022.11.14.516382
Autor:
Subham Choudhury, Michael Moret, Pierre SALVY, Ljubisa Miskovic, Daniel Robert Weilandt, Vassily Hatzimanikatis
Kinetic models of metabolism relate metabolic fluxes, metabolite concentrations and enzyme levels through mechanistic relations, rendering them essential for understanding, predicting and optimizing the behaviour of living organisms. However, due to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa99d0033e7349996570e02df0ae796c
https://doi.org/10.1101/2022.01.06.475020
https://doi.org/10.1101/2022.01.06.475020
Publikováno v:
Computer Aided Chemical Engineering ISBN: 9780323958790
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::443c58d686bbf7adae13cf7ef6cd07a1
https://doi.org/10.1016/b978-0-323-95879-0.50091-6
https://doi.org/10.1016/b978-0-323-95879-0.50091-6
Autor:
Pierre Salvy, Ljubisa Miskovic, Maria Masid, Vassily Hatzimanikatis, Maxime Curvat, Omid Oftadeh
Publikováno v:
Nature Communications
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
Eukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the descript