Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Liviu C. Florescu"'
Autor:
Liviu C. Florescu
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 26, Iss 6, Pp 359-369 (2001)
We introduce a limit tower structure on the space of all bounded Radon measures on a completely regular space and we extend the Prohorov's theorem of narrow compactness. In the particular case of Polish spaces, we give a sequential version of this ex
Externí odkaz:
https://doaj.org/article/810ad19014174a52a7d3c0678b45a0e7
In recent years, technological progress created a great need for complex mathematical models. Many practical problems can be formulated using optimization theory and they hope to obtain an optimal solution. In most cases, such optimal solution can no
Autor:
Liviu C. Florescu
This book presents four topics related to undergraduate courses, typically not covered in standard lectures. Written in a clear and careful style, these four “pearls” aim at complementing and deepening the knowledge of students and instructors by
Autor:
Liviu C. Florescu
Publikováno v:
Lebesgue Integral ISBN: 9783030601621
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::387305f31b37835951b8962cfee55749
https://doi.org/10.1007/978-3-030-60163-8_7
https://doi.org/10.1007/978-3-030-60163-8_7
Autor:
Liviu C. Florescu
Publikováno v:
Lebesgue Integral ISBN: 9783030601621
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4d71d3367a52b67e129b106b9131f886
https://doi.org/10.1007/978-3-030-60163-8_3
https://doi.org/10.1007/978-3-030-60163-8_3
Autor:
Liviu C. Florescu
Publikováno v:
Lebesgue Integral ISBN: 9783030601621
Let \(\mathbb {R}\) be the set of real numbers. Throughout this book, the extended set of real numbers is \(\bar {\mathbb {R}} = \mathbb {R}\cup \{-\infty , +\infty \}\) and the extended subset of real positive numbers is \(\bar {\mathbb {R}}_+ = \ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bbce27f99caf42ddf08aa99700071b42
https://doi.org/10.1007/978-3-030-60163-8_1
https://doi.org/10.1007/978-3-030-60163-8_1
Autor:
Liviu C. Florescu
Publikováno v:
Lebesgue Integral ISBN: 9783030601621
This chapter is devoted to a class of Banach spaces constructed using the notion of an integrable function—Lebesgue spaces or classical Banach spaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::59b1678831b862e20be1479e2529395c
https://doi.org/10.1007/978-3-030-60163-8_4
https://doi.org/10.1007/978-3-030-60163-8_4
Autor:
Liviu C. Florescu
Publikováno v:
Lebesgue Integral ISBN: 9783030601621
Let \( \mathbb {R}\times \mathbb {R} = \mathbb {R}^2 = \{ (x_1,x_2): x_1, x_2\in \mathbb {R}\}\) and \( \mathbb {R}\times \mathbb {R}\times \mathbb {R} = \mathbb {R}^3 = \{ (x_1,x_2,x_3): x_1, x_2,x_3\in \mathbb {R}\}\); by the usual operations of ad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6349b46d5ce4065b6b01d3ac3452060f
https://doi.org/10.1007/978-3-030-60163-8_5
https://doi.org/10.1007/978-3-030-60163-8_5
Autor:
Liviu C. Florescu
This book presents a compact and self-contained introduction to the theory of measure and integration. The introduction into this theory is as necessary (because of its multiple applications) as difficult for the uninitiated. Most measure theory trea
Autor:
Liviu C. Florescu
Publikováno v:
SeMA Journal. 74:115-132
We prove that the Dudley metric is complete on the space of Young measures and then we study the uniform continuity of functional \(u\mapsto \int _{\Omega }f(t,u(t)) dt\) on subsets of \({\mathcal {L}}^{1}(\Omega , \mathbb R^{s})\). The results are a