Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Livia Almada Cruz"'
Autor:
Valmir Oliveira Dos Santos Junior, Joao Araujo Castelo Branco, Marcos Antonio De Oliveira, Ticiana L. Coelho Da Silva, Livia Almada Cruz, Regis Pires Magalhaes
Publikováno v:
2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE).
Autor:
Jose S. Da Silva Neto, Ticiana L. Coelho Da Silva, Livia Almada Cruz, Vinicius Monteiro de Lira, Jose Antonio F. de Macedo, Regis Pires Magalhaes, Lucas Gaspar Peres
Publikováno v:
ICTAI 2021-IEEE 33rd International Conference on Tools with Artificial Intelligence, Washington, DC, USA, 1-3/11/2021
info:cnr-pdr/source/autori:Da Silva Neto J.S.; Coelho Da Silva T.L.; Cruz L.A.; Monteiro de Lira V.; José Antônio F. de Macêdo José A.F.; Magalh R.P./congresso_nome:ICTAI 2021-IEEE 33rd International Conference on Tools with Artificial Intelligence/congresso_luogo:Washington, DC, USA/congresso_data:1-3%2F11%2F2021/anno:2021/pagina_da:/pagina_a:/intervallo_pagine
info:cnr-pdr/source/autori:Da Silva Neto J.S.; Coelho Da Silva T.L.; Cruz L.A.; Monteiro de Lira V.; José Antônio F. de Macêdo José A.F.; Magalh R.P./congresso_nome:ICTAI 2021-IEEE 33rd International Conference on Tools with Artificial Intelligence/congresso_luogo:Washington, DC, USA/congresso_data:1-3%2F11%2F2021/anno:2021/pagina_da:/pagina_a:/intervallo_pagine
Neural Networks (NN), although successfully applied to several Artificial Intelligence tasks, are often unnecessarily over-parametrized. In edge/fog computing, this might make their training prohibitive on resource-constrained devices, contrasting wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ea78e31283ce24e6a3b441eafe179fa6
https://openportal.isti.cnr.it/doc?id=people______::29c61ca9414d22fd89461c13f28a8556
https://openportal.isti.cnr.it/doc?id=people______::29c61ca9414d22fd89461c13f28a8556
Autor:
Lívia Almada Cruz, Ticiana Linhares Coelho da Silva, Régis Pires Magalhães, Wilken Charles Dantas Melo, Matheus Cordeiro, José Antonio Fernandes de Macedo, Karine Zeitouni
Publikováno v:
Sensors, Vol 22, Iss 19, p 7475 (2022)
Representation learning seeks to extract useful and low-dimensional attributes from complex and high-dimensional data. Natural language processing (NLP) was used to investigate the representation learning models to extract words’ feature vectors us
Externí odkaz:
https://doaj.org/article/1fb4708aa6ab4ea18226db608bc8ad25