Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Liva Ralaivola"'
Publikováno v:
PLoS ONE, Vol 9, Iss 8, p e104586 (2014)
In brain imaging, solving learning problems in multi-subjects settings is difficult because of the differences that exist across individuals. Here we introduce a novel classification framework based on group-invariant graphical representations, allow
Externí odkaz:
https://doaj.org/article/2bec3e643d3e4fb1bd701b94f9021f70
Autor:
Audiffren, Julien, Liva, Ralaivola
We adress the problem of dueling bandits defined on partially ordered sets, or posets. In this setting, arms may not be comparable, and there may be several (incomparable) optimal arms. We propose an algorithm, UnchainedBandits, that efficiently find
Externí odkaz:
http://arxiv.org/abs/1602.02706
Publikováno v:
Machine Learning. 110:881-905
K-means—and the celebrated Lloyd’s algorithm—is more than the clustering method it was originally designed to be. It has indeed proven pivotal to help increase the speed of many machine learning, data analysis techniques such as indexing, neare
Publikováno v:
IEEE Transactions on Information Theory. 65:7407-7414
We study the properties of the Frank–Wolfe algorithm to solve the m-Exact-Sparse reconstruction problem, where a signal $y$ must be expressed as a sparse linear combination of a predefined set of atoms, called dictionary . We prove that when the si
Publikováno v:
Machine Learning
Machine Learning, Springer Verlag, 2021, Machine Learning, 110, pp.881-905. ⟨10.1007/s10994-021-05965-0⟩
HAL
Machine Learning, 2021, Machine Learning, 110, pp.881-905. ⟨10.1007/s10994-021-05965-0⟩
Machine Learning, Springer Verlag, 2021, Machine Learning, 110, pp.881-905. ⟨10.1007/s10994-021-05965-0⟩
HAL
Machine Learning, 2021, Machine Learning, 110, pp.881-905. ⟨10.1007/s10994-021-05965-0⟩
International audience; K-means -- and the celebrated Lloyd algorithm -- is more than the clustering method it was originally designed to be. It has indeed proven pivotal to help increase the speed of many machine learning and data analysis technique
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87c904d79552fb9a1fc8d3e65b1bf188
https://hal.archives-ouvertes.fr/hal-02174845
https://hal.archives-ouvertes.fr/hal-02174845
Publikováno v:
Aalto University
International Conference on Machine Learning
International Conference on Machine Learning, Jul 2020, Vienne, Austria
International Conference on Machine Learning, Jul 2020, Vienne (Online), Austria
International Conference on Machine Learning
International Conference on Machine Learning, Jul 2020, Vienne, Austria
International Conference on Machine Learning, Jul 2020, Vienne (Online), Austria
International audience; The trace regression model, a direct extension of the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce an even more general model, namely the partial-trace regression m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::820f0628b091b459100fdf155fd00b01
https://aaltodoc.aalto.fi/handle/123456789/107919
https://aaltodoc.aalto.fi/handle/123456789/107919
Publikováno v:
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory, 2019, 65 (11)
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2019, 65 (11)
HAL
IEEE Transactions on Information Theory, 2019, 65 (11)
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2019, 65 (11)
HAL
International audience; We study the properties of the Frank-Wolfe algorithm to solve the m-EXACT-SPARSE reconstruction problem, where a signal y must be expressed as a sparse linear combination of a predefined set of atoms, called dictionary. We pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa86ac56af68bfa0b92821ebea643b62
https://hal.science/hal-01919761v2/file/Franck_Wolfe_Cherfaoui_and_al_TIT.pdf
https://hal.science/hal-01919761v2/file/Franck_Wolfe_Cherfaoui_and_al_TIT.pdf
Publikováno v:
iTWIST: international Traveling Workshop on Interactions between low-complexity data models and Sensing Techniques
iTWIST: international Traveling Workshop on Interactions between low-complexity data models and Sensing Techniques, Nov 2018, Marseille, France
HAL
iTWIST: international Traveling Workshop on Interactions between low-complexity data models and Sensing Techniques, Nov 2018, Marseille, France
HAL
International audience; In this paper, we study the properties of the Frank-Wolfe algorithm to solve the \ExactSparse reconstruction problem. We prove that when the dictionary is quasi-incoherent, at each iteration, the Frank-Wolfe algorithm picks up
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bc37c52dc9a07d00a680d53f5bdb89c
https://hal-amu.archives-ouvertes.fr/hal-01881329/document
https://hal-amu.archives-ouvertes.fr/hal-01881329/document
Autor:
Liva Ralaivola, Pascal Denis
Publikováno v:
European Chapter of the Association for Computational Linguistics
European Chapter of the Association for Computational Linguistics, Apr 2017, Valencia, Spain. pp.775-784, ⟨10.18653/v1/E17-1073⟩
EACL (1)
European Chapter of the Association for Computational Linguistics, Apr 2017, Valencia, Spain. pp.775-784, ⟨10.18653/v1/E17-1073⟩
EACL (1)
International audience; This paper presents a new, efficient method for learning task-specific word vectors using a variant of the Passive-Aggressive algorithm. Specifically, this algorithm learns a word embedding matrix in tandem with the classifier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1a636c124a9614b511f234079e19798
https://inria.hal.science/hal-01590594
https://inria.hal.science/hal-01590594
Publikováno v:
Neurocomputing
Neurocomputing, Elsevier, 2017, 219, pp.15-25. ⟨10.1016/j.neucom.2016.09.016⟩
Neurocomputing, 2017, 219, pp.15-25. ⟨10.1016/j.neucom.2016.09.016⟩
Neurocomputing, Elsevier, 2017, 219, pp.15-25. ⟨10.1016/j.neucom.2016.09.016⟩
Neurocomputing, 2017, 219, pp.15-25. ⟨10.1016/j.neucom.2016.09.016⟩
Published version: http://www.sciencedirect.com/science/article/pii/S0925231216310177; International audience; This paper generalizes a pivotal result from the PAC-Bayesian literature ---the C-bound--- primarily designed for binary classification to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0bae2a88fb6f8d5a70ff7809675d0de
https://hal.archives-ouvertes.fr/hal-01363293
https://hal.archives-ouvertes.fr/hal-01363293