Zobrazeno 1 - 10
of 763
pro vyhledávání: '"Liu Zeyuan"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Distribution shift is a major obstacle in offline reinforcement learning, which necessitates minimizing the discrepancy between the learned policy and the behavior policy to avoid overestimating rare or unseen actions. Previous conservative offline R
Externí odkaz:
http://arxiv.org/abs/2406.07541
Autor:
Liu, Zeyuan, Huan, Ziyu, Wang, Xiyao, Lyu, Jiafei, Tao, Jian, Li, Xiu, Huang, Furong, Xu, Huazhe
Reinforcement learning struggles in the face of long-horizon tasks and sparse goals due to the difficulty in manual reward specification. While existing methods address this by adding intrinsic rewards, they may fail to provide meaningful guidance in
Externí odkaz:
http://arxiv.org/abs/2406.07381
Machine learning methods based on AdaBoost have been widely applied to various classification problems across many mission-critical applications including healthcare, law and finance. However, there is a growing concern about the unfairness and discr
Externí odkaz:
http://arxiv.org/abs/2401.03097
The partial observability and stochasticity in multi-agent settings can be mitigated by accessing more information about others via communication. However, the coordination problem still exists since agents cannot communicate actual actions with each
Externí odkaz:
http://arxiv.org/abs/2209.12713
Publikováno v:
Scientometrics
Scientometrics, 2021, 126 (7), pp.6273-6300. ⟨10.1007/s11192-021-04010-0⟩
Scientometrics, Springer Verlag, 2021, 126 (7), pp.6273-6300. ⟨10.1007/s11192-021-04010-0⟩
Scientometrics, 2021, 126 (7), pp.6273-6300. ⟨10.1007/s11192-021-04010-0⟩
Scientometrics, Springer Verlag, 2021, 126 (7), pp.6273-6300. ⟨10.1007/s11192-021-04010-0⟩
International audience; The influence of authors is mostly based on their capacity to form specific self-contained and/or active research communities or topics while also inspiring fruitful spin-off research derived from those communities or topics.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b14486822d7cb18ab1f39a359104958
https://hal.science/hal-03285158
https://hal.science/hal-03285158
Autor:
Liu, Zeyuan, Zhang, Lan
Publikováno v:
In Nonlinear Analysis: Real World Applications December 2024 80
Publikováno v:
In Neuropharmacology 1 November 2024 258
Autor:
Wang, Yihao, Wang, Xuying, Liu, Zeyuan, Chao, Shaoliang, Zhang, Jing, Zheng, Yixuan, Zhang, Yu, Xue, Wenbo, Wang, Jinnan, Lei, Yu
Publikováno v:
In Environmental Science and Ecotechnology November 2024 22