Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Liu, Yeqin"'
Autor:
Liu, Yeqin, Shen, Yu
We study Morita theory of Azumaya algebras on root gerbes $\mathscr{X}$. There, we find explicit equivalent conditions for Morita equivalence. During this study, we find examples of a decomposable category become indecomposable after a Brauer twist.<
Externí odkaz:
http://arxiv.org/abs/2409.20317
Autor:
Liu, Yeqin, Shen, Yu
We construct tilt stability conditions on surface root stacks and show that they have support property with respect to the rational Chen-Ruan cohomology.
Comment: 28 pages, 0 figures
Comment: 28 pages, 0 figures
Externí odkaz:
http://arxiv.org/abs/2407.19104
Autor:
Gould, Benjamin, Liu, Yeqin
In this paper we examine the cones of effective cycles on blow ups of projective spaces along smooth rational curves. We determine explicitly the cones of divisors and 1- and 2-dimensional cycles on blow ups of rational normal curves, and strengthen
Externí odkaz:
http://arxiv.org/abs/2308.13964
Autor:
Liu, Yeqin
We show that when a K3 surface acquires a node, the existence of stable spherical sheaves of certain Chern classes can be obstructed.
Comment: 16 pages, 2 figures. (Minor fixes from the previous version)
Comment: 16 pages, 2 figures. (Minor fixes from the previous version)
Externí odkaz:
http://arxiv.org/abs/2307.00091
Autor:
Liu, Yeqin
We prove that on $\mathbb{P}^{3}$ there is no exceptional bundle with rank $r=2d^{2}+1$ and degree $d$ for every $|d|\geq 4$. In particular, we find a new obstruction for the existence of exceptional bundles other than $r|(2d^{2}+1)$. We also show th
Externí odkaz:
http://arxiv.org/abs/2302.11743
Autor:
Liu, Yeqin
We find an algorithm to compute the cohomology groups of spherical vector bundles on complex projective K3 surfaces, in terms of their Mukai vectors. In many good cases, we give significant simplifications of the algorithm. As an application, when th
Externí odkaz:
http://arxiv.org/abs/2210.11030
Let $M_{\mathbb{P}^2}(v)$ be a moduli space of semistable sheaves on $\mathbb{P}^2$, and let $B^k(v) \subseteq M_{\mathbb{P}^2}(v)$ be the \textit{Brill-Noether locus} of sheaves $E$ with $h^0(\mathbb{P}^2, E) \geq k$. In this paper we develop the fo
Externí odkaz:
http://arxiv.org/abs/2201.02906
Autor:
Liu, Yeqin
We prove that on $\mathbb{P}^{3}$ there is at most one exceptional vector bundle with a given Chern character.
Comment: 10 pages, 0 figures
Comment: 10 pages, 0 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31079a1ef8012a5a464fe4e8144e1b9c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Liu, Yeqing
Thesis: M. Eng. in Environmental Engineering, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 57-60).
A st
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 57-60).
A st
Externí odkaz:
http://hdl.handle.net/1721.1/99568