Zobrazeno 1 - 10
of 632
pro vyhledávání: '"Liu, Shibo"'
Autor:
Liu, Shibo, Zhao, Chunshan
Let $p,q$ be functions on $\mathbb{R}^{N}$ satisfying $1\ll q\ll p\ll N$, we consider $p(x)$-Laplacian problems of the form \[ \left\{ \begin{array} [c]{l}% -\Delta_{p(x)}u+V(x)\vert u\vert ^{p(x)-2}u=\lambda\vert u\vert ^{q(x)-2}u+g(x,u)\text{,}\\ u
Externí odkaz:
http://arxiv.org/abs/2409.15540
We propose conformal polynomial coordinates for 2D closed high-order cages, which consist of polynomial curves of any order. The coordinates enable the transformation of the input polynomial curves into polynomial curves of any order. We extend the c
Externí odkaz:
http://arxiv.org/abs/2408.06831
Publikováno v:
Journal of Aeronautical Materials, Vol 44, Iss 5, Pp 117-128 (2024)
Thermoelectric materials can efficiently and cleanly convert between electrical and thermal energy,offering significant prospects in waste heat recovery and electronic cooling applications. Lead telluride(PbTe)materials were used in thermoelect
Externí odkaz:
https://doaj.org/article/6a6b0f097c3f4e328396e6b1c97345d1
Autor:
Jiang, Shuai, Liu, Shibo
We obtain a sequence of solutions converging to zero for the Kirchhoff equation $$-\left( 1+\int_{\Omega}\left\vert \nabla u\right\vert^2\right) \Delta u+V(x)u=f(u)\text{,\qquad}u\in H_{0}^{1}(\Omega)$$ via truncating technique and a variant of Clark
Externí odkaz:
http://arxiv.org/abs/2301.04236
Autor:
Chen, Wenxiong1 (AUTHOR) chenwenxiong@amss.ac.cn, Liu, Shibo2 (AUTHOR), Urbina, Wilfredo (AUTHOR) wurbinaromero@roosevelt.edu
Publikováno v:
Journal of Function Spaces. 9/30/2024, Vol. 2024, p1-6. 6p.
Autor:
Li, Yufeng1,2 (AUTHOR) gxh1172@163.com, Liu, Shibo1 (AUTHOR), Feng, Feng1 (AUTHOR), Li, Yiming1 (AUTHOR), Han, Yahui1 (AUTHOR), Tong, Xinyang1 (AUTHOR), Gao, Xiaohui1 (AUTHOR)
Publikováno v:
Polymers (20734360). Sep2024, Vol. 16 Issue 18, p2641. 23p.
Autor:
Jiang, Shuai, Liu, Shibo
In this paper we consider 6-superlinear Chern-Simons-Schr\"{o}dinger systems. In contrast to most studies, we consider the case where the potential $V$ is indefinite so that the Schr\"{o}dinger operator $-\Delta +V$ possesses a finite-dimensional neg
Externí odkaz:
http://arxiv.org/abs/2211.17002
Autor:
Liu, Shibo, Yin, Li-Feng
In this paper, we consider the following quasilinear Schr\"{o}dinger equation \begin{align*} -\Delta u-u\Delta(u^{2})=k(x)\left\vert u\right\vert ^{q-2}u-h(x)\left\vert u\right\vert ^{s-2}u\text{, }u\in D^{1,2}(\mathbb{R}^{N})\text{,} \end{align*} wh
Externí odkaz:
http://arxiv.org/abs/2211.08394
Publikováno v:
In Thin-Walled Structures January 2025 206 Part A
Autor:
Wang, Hang, Zhang, Lijun, Li, Kewei, Zhang, Weijian, Ma, Zhe, Chen, Xiaohua, Ai, Li, Liu, Dehao, Yang, Ning, Liu, Shibo, Meng, Fanbo
Publikováno v:
In Measurement January 2025 242 Part C