Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Liu, Mingwen"'
Logical reasoning remains a pivotal component within the realm of artificial intelligence. The recent evolution of large language models (LLMs) has marked significant progress in this domain. The adoption of strategies like chain-of-thought (CoT) has
Externí odkaz:
http://arxiv.org/abs/2311.06736
Autor:
Ma, Xiaoteng, Liang, Zhipeng, Blanchet, Jose, Liu, Mingwen, Xia, Li, Zhang, Jiheng, Zhao, Qianchuan, Zhou, Zhengyuan
Among the reasons hindering reinforcement learning (RL) applications to real-world problems, two factors are critical: limited data and the mismatch between the testing environment (real environment in which the policy is deployed) and the training e
Externí odkaz:
http://arxiv.org/abs/2209.06620
Publikováno v:
In Journal of Hydrology June 2024 637
Autor:
Wang, Xiaoyi, Corzo, Gerald, Lü, Haishen, Zhou, Shiliang, Mao, Kangmin, Zhu, Yonghua, Duarte, Santiago, Liu, Mingwen, Su, Jianbin
Publikováno v:
In Agricultural Water Management 30 April 2024 295
This paper intends to apply the Hidden Markov Model into stock market and and make predictions. Moreover, four different methods of improvement, which are GMM-HMM, XGB-HMM, GMM-HMM+LSTM and XGB-HMM+LSTM, will be discussed later with the results of ex
Externí odkaz:
http://arxiv.org/abs/2104.09700
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
This paper demonstrates how to apply machine learning algorithms to distinguish good stocks from the bad stocks. To this end, we construct 244 technical and fundamental features to characterize each stock, and label stocks according to their ranking
Externí odkaz:
http://arxiv.org/abs/1806.01743
We proposed a new Portfolio Management method termed as Robust Log-Optimal Strategy (RLOS), which ameliorates the General Log-Optimal Strategy (GLOS) by approximating the traditional objective function with quadratic Taylor expansion. It avoids GLOS'
Externí odkaz:
http://arxiv.org/abs/1805.00205
Autor:
Liu, Mingwen, Lü, Haishen, Lindenschmidt, Karl-Erich, Xü, Kaili, Zhu, Yonghua, He, Chaolu, Wang, Xiaoyi, Xie, Bingqi
Publikováno v:
In Journal of Hydrology December 2022 615 Part A