Zobrazeno 1 - 10
of 1 886
pro vyhledávání: '"Little, Alex"'
In this work we establish under certain hypotheses the $N \to +\infty$ asymptotic expansion of integrals of the form $$\mathcal{Z}_{N,\Gamma}[V] \, = \, \int_{\Gamma^N} \prod_{ a < b}^{N}(z_a - z_b)^\beta \, \prod_{k=1}^{N} \mathrm{e}^{ - N \beta V(z
Externí odkaz:
http://arxiv.org/abs/2411.10610
Autor:
Little, Alex
Publikováno v:
SIGMA 20 (2024), 076, 32 pages
We present a representation of skew-orthogonal polynomials of symplectic type ($\beta=4$) in terms of a matrix Riemann-Hilbert problem, for weights of the form ${\rm e}^{-V(z)}$ where $V$ is a polynomial of even degree and positive leading coefficien
Externí odkaz:
http://arxiv.org/abs/2306.14107
Autor:
Bothner, Thomas, Little, Alex
We show that the distribution of bulk spacings between pairs of adjacent eigenvalue real parts of a random matrix drawn from the complex elliptic Ginibre ensemble is asymptotically given by a generalization of the Gaudin-Mehta distribution, in the li
Externí odkaz:
http://arxiv.org/abs/2212.00525
Autor:
MARK WAREHAM
Publikováno v:
Mail on Sunday. 11/17/2024, p4. 1p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bothner, Thomas, Little, Alex
The focus of this paper is on the distribution function of the rightmost eigenvalue for the complex elliptic Ginibre ensemble in the limit of weak non-Hermiticity. We show how the limiting distribution function can be expressed in terms of an integro
Externí odkaz:
http://arxiv.org/abs/2208.04684
Autor:
Michael Hauskeller
Publikováno v:
Cambridge Quarterly of Healthcare Ethics. 26:365-376
It has been argued that moral bioenhancement is desirable even if it would make it impossible for us to do what is morally required. Others find this apparent loss of freedom deplorable. However, it is difficult to see how a world in which there is n
Publikováno v:
New Zealand Trucking Magazine. Dec2022, p20-20. 2/3p.
Let $O$ be chosen uniformly at random from the group of $(N+L) \times (N+L)$ orthogonal matrices. Denote by $\tilde{O}$ the upper-left $N \times N$ corner of $O$, which we refer to as a truncation of $O$. In this paper we prove two conjectures of For
Externí odkaz:
http://arxiv.org/abs/2102.08842
Autor:
Danaher, John1 john.danaher@nuigalway.ie
Publikováno v:
Royal Institute of Philosophy Supplement. Oct2018, Vol. 83, p233-250. 18p.