Zobrazeno 1 - 10
of 236
pro vyhledávání: '"Litterick A"'
As the demand for Internet of Things (IoT) and Human-to-Machine Interaction (HMI) increases, modern System-on-Chips (SoCs) offering such solutions are becoming increasingly complex. This intricate design poses significant challenges for verification,
Externí odkaz:
http://arxiv.org/abs/2404.15371
Let $H \subseteq G$ be connected reductive linear algebraic groups defined over an algebraically closed field of characteristic $p> 0$. In our first main theorem we show that if a closed subgroup $K$ of $H$ is $H$-completely reducible, then it is als
Externí odkaz:
http://arxiv.org/abs/2401.16927
Autor:
Akello-Egwell, Dolica, Leedham-Green, Charles, Litterick, Alastair, Markström, Klas, Riis, Søren
In this paper we give the first explicit enumeration of all maximal Condorcet domains on $n\leq 7$ alternatives. This has been accomplished by developing a new algorithm for constructing Condorcet domains, and an implementation of that algorithm whic
Externí odkaz:
http://arxiv.org/abs/2306.15993
Let $G$ be a simple algebraic group of exceptional type over an algebraically closed field of characteristic $p > 0$. This paper continues a long-standing effort to classify the connected reductive subgroups of $G$. Having previously completed the cl
Externí odkaz:
http://arxiv.org/abs/2304.08388
We describe a new approach for classifying conjugacy classes of elementary abelian subgroups in simple algebraic groups over an algebraically closed field, and understanding the normaliser and centraliser structure of these. For toral subgroups, we g
Externí odkaz:
http://arxiv.org/abs/2303.02364
This survey article has two components. The first part gives a gentle introduction to Serre's notion of $G$-complete reducibility, where $G$ is a connected reductive algebraic group defined over an algebraically closed field. The second part concerns
Externí odkaz:
http://arxiv.org/abs/2209.11310
Let $k$ be a nonperfect separably closed field. Let $G$ be a connected reductive algebraic group defined over $k$. We study rationality problems for Serre's notion of complete reducibility of subgroups of $G$. In particular, we present the first exam
Externí odkaz:
http://arxiv.org/abs/2011.13659
In this note, we unify and extend various concepts in the area of $G$-complete reducibility, where $G$ is a reductive algebraic group. By results of Serre and Bate--Martin--R\"{o}hrle, the usual notion of $G$-complete reducibility can be re-framed as
Externí odkaz:
http://arxiv.org/abs/2004.14604
Autor:
Litterick, Alastair, Martin, Benjamin
We prove a generalization of a conjecture of C. Marion on generation properties of finite groups of Lie type, by considering geometric properties of an appropriate representation variety and associated tangent spaces.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1906.03343
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.