Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Lisoněk, P."'
Autor:
Dastbasteh, Reza, Lisonek, Petr
We introduce new sufficient conditions for permutation and monomial equivalence of linear cyclic codes over various finite fields. We recall that monomial equivalence and isometric equivalence are the same relation for linear codes over finite fields
Externí odkaz:
http://arxiv.org/abs/2211.00897
Autor:
Dastbasteh, Reza, Lisonek, Petr
We present new constructions of binary quantum codes from quaternary linear Hermitian self-dual codes. Our main ingredients for these constructions are nearly self-orthogonal cyclic or duadic codes over F_4. An infinite family of $0$-dimensional bina
Externí odkaz:
http://arxiv.org/abs/2211.00891
Publikováno v:
Phys. Rev. Lett. 129, 200401 (2022)
Magic sets of observables are minimal structures that capture quantum state-independent advantage for systems of $n\ge 2$ qubits and are, therefore, fundamental tools for investigating the interface between classical and quantum physics. A theorem by
Externí odkaz:
http://arxiv.org/abs/2202.13141
Autor:
Lapierre, Lucien, Lisonek, Petr
We prove new non-existence results for vectorial monomial Dillon type bent functions mapping the field of order $2^{2m}$ to the field of order $2^{m/3}$. When $m$ is odd and $m>3$ we show that there are no such functions. When $m$ is even we derive a
Externí odkaz:
http://arxiv.org/abs/2110.15585
Autor:
Chase, Benjamin, Lisonek, Petr
A Walsh zero space (WZ space) for $f:F_{2^n}\rightarrow F_{2^n}$ is an $n$-dimensional vector subspace of $F_{2^n}\times F_{2^n}$ whose all nonzero elements are Walsh zeros of $f$. We provide several theoretical and computer-free constructions of WZ
Externí odkaz:
http://arxiv.org/abs/2110.15582
Autor:
Chase, Benjamin, Lisonek, Petr
The problem of finding APN permutations of ${\mathbb F}_{2^n}$ where $n$ is even and $n>6$ has been called the Big APN Problem. Li, Li, Helleseth and Qu recently characterized APN functions defined on ${\mathbb F}_{q^2}$ of the form $f(x)=x^{3q}+a_1x
Externí odkaz:
http://arxiv.org/abs/2009.05937
Autor:
Lisonek, Petr
Publikováno v:
Designs, Codes and Cryptography 88 (2020), 2521-2530
We say that $(x,y,z)\in Q^3$ is an associative triple in a quasigroup $Q(*)$ if $(x*y)*z=x*(y*z)$. Let $a(Q)$ denote the number of associative triples in $Q$. It is easy to show that $a(Q)\ge |Q|$, and we call the quasigroup maximally nonassociative
Externí odkaz:
http://arxiv.org/abs/1910.09825
Autor:
Elford, Brandon, Lisonek, Petr
For the first time we construct an infinite family of Kochen-Specker sets in a space of fixed dimension, namely in R^4. While most of the previous constructions of Kochen-Specker sets have been based on computer search, our construction is analytical
Externí odkaz:
http://arxiv.org/abs/1905.09443
Autor:
Lisonek, Petr
Publikováno v:
Theoretical Computer Science 800 (2019), 142-145
We introduce a new class of complex Hadamard matrices which have not been studied previously. We use these matrices to construct a new infinite family of parity proofs of the Kochen-Specker theorem. We show that the recently discovered simple parity
Externí odkaz:
http://arxiv.org/abs/1612.02901
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.