Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Liselott Flodén"'
Publikováno v:
Journal of Applied Mathematics, Vol 2014 (2014)
The main contribution of this paper is the homogenization of the linear parabolic equation ∂tuε(x,t)-∇·(a(x/εq1,...,x/εqn,t/εr1,...,t/εrm)∇uε(x,t))=f(x,t) exhibiting an arbitrary finite number of both spatial and temporal scales. We brie
Externí odkaz:
https://doaj.org/article/cbd858e3a7484b508af785c5e26d5773
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
We consider the homogenization of the linear parabolic problem which exhibits a mismatch between the spatial scales in the sense that the coefficient of the elliptic part has one frequency of fast spatial oscillations, whereas the coefficient of the
Externí odkaz:
https://doaj.org/article/35768dc3ddd9433a9ddbb7aafc5399a0
Research has identified several aspects that influence students' transition to mathematics studies at university, but these aspects have often been studied separately. Our study contributes to the field's understanding of the transition between upper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd5fc347318b7ae6b5aa1b66a14da71e
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-195477
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-195477
Autor:
Jens Persson, Liselott Flodén
Publikováno v:
Networks and Heterogeneous Media. 11:627-653
This paper concerns the homogenization of nonlinear dissipative hyperbolic problems \begin{gather*} \partial _{tt}u^{\varepsilon }\left( x,t\right) -\nabla \cdot \left( a\left( \frac{x}{\varepsilon ^{q_{1}}},\ldots ,\frac{x}{\varepsilon ^{q_{n}}},\fr
Autor:
Liselott Flodén, Jens Persson, Marianne Olsson Lindberg, Pernilla Jonasson, Tatiana Lobkova, Anders Holmbom
Publikováno v:
Progress in Industrial Mathematics at ECMI 2016 ISBN: 9783319630816
We study the homogenization of a certain linear hyperbolic-parabolic problem exhibiting two rapid spatial scales {ε; ε2}. The homogenization is performed by means of evolution multiscale convergence, a generalization of the concept of two-scale con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b20e3935f43fd9fc186b82325d15d7c8
https://doi.org/10.1007/978-3-319-63082-3_94
https://doi.org/10.1007/978-3-319-63082-3_94
Autor:
Pernilla Jonasson, Liselott Flodén, Ye Zhang, Anders Holmbom, M. Olsson Lindberg, Tatiana Lobkova
Publikováno v:
AIP Conference Proceedings.
We study the homogenization of a hyperbolic-parabolic PDE with oscillations in one fast spatial scale. Moreover, the first order time derivative has a degenerate coefficient passing to infinity when e→0. We obtain a local problem which is of ellipt
Publikováno v:
Pure and Applied Mathematics Quarterly. 9:461-486
We first study the fundamental ideas behind two-scale conver-gence to enhance an intuitive understanding of this notion. The classicaldefinitions and ideas are motivated with geometrical arguments illustratedby illuminating figures. Then a version of
Publikováno v:
Ann. Funct. Anal. 2, no. 1 (2011), 84-99
We apply a new version of multiscale convergence named very weak multiscale convergence to find possible frequencies of oscillation in an unknown coefficient of a partial differential equation from its solution. We also use
Publikováno v:
ANNALI DELL'UNIVERSITA' DI FERRARA. 53:217-232
Reiterated homogenization is studied for divergence structure parabolic problems of the form \({\frac{\partial u_{\varepsilon}}{\partial t}} - \mathrm{div}\left(a\left({\frac{x}{\varepsilon}},{\frac{x}{\varepsilon^2}} ,t, D u_{\varepsilon}\right)\rig
Autor:
Liselott Flodén, Marianne Olsson
Publikováno v:
Applications of Mathematics. 52:431-446
The main focus in this paper is on homogenization of the parabolic problem ∂ t uɛ − ∇ · (a(x/ɛ,t/ɛ,t/ɛ r )∇u ɛ ) = f. Under certain assumptions on a, there exists a G-limit b, which we characterize by means of multiscale techniques for