Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Lisa Sauermann"'
Autor:
Matthew Kwan, Lisa Sauermann
Publikováno v:
Discrete Analysis (2020)
An algebraic inverse theorem for the quadratic Littlewood-Offord problem, and an application to Ramsey graphs, Discrete Analysis 2020:12, 34 pp. The Littlewood-Offord problem is the following general question. Let $v_1,\dots,v_n$ be vectors in $\mat
Externí odkaz:
https://doaj.org/article/b77140f8ed5f4e69add6493a84fce9e1
Publikováno v:
Combinatorics, Probability and Computing. 31:21-28
Consider a random $n\times n$ zero-one matrix with ‘sparsity’ p, sampled according to one of the following two models: either every entry is independently taken to be one with probability p (the ‘Bernoulli’ model) or each row is independently
Autor:
Lisa Sauermann
Publikováno v:
Israel Journal of Mathematics. 243:63-79
Let us fix a prime $p$. The Erd\H{o}s-Ginzburg-Ziv problem asks for the minimum integer $s$ such that any collection of $s$ points in the lattice $\mathbb{Z}^n$ contains $p$ points whose centroid is also a lattice point in $\mathbb{Z}^n$. For large $
Autor:
Lisa Sauermann
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 28:67-70
Publikováno v:
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).
List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form $r=1-\vare
Autor:
Lisa Sauermann
Publikováno v:
Journal of Combinatorial Theory, Series B. 134:36-75
Erdős, Faudree, Rousseau and Schelp observed the following fact for every fixed integer k ≥ 2 : Every graph on n ≥ k − 1 vertices with at least ( k − 1 ) ( n − k + 2 ) + ( k − 2 2 ) edges contains a subgraph with minimum degree at least
Publikováno v:
The Annals of Probability. 49
Fix a graph H and some p∈(0,1), and let XH be the number of copies of H in a random graph G(n,p). Random variables of this form have been intensively studied since the foundational work of Erdős and Renyi. There has been a great deal of progress o
Autor:
Lisa Sauermann, Yuval Wigderson
Motivated by higher vanishing multiplicity generalizations of Alon's Combinatorial Nullstellensatz and its applications, we study the following problem: for fixed $k\geq 1$ and $n$ large with respect to $k$, what is the minimum possible degree of a p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47f826574e3fea2a2c04bec9ce920d2b
http://arxiv.org/abs/2010.00077
http://arxiv.org/abs/2010.00077
Autor:
Lisa Sauermann
Publikováno v:
50 Jahre Bundeswettbewerb Mathematik ISBN: 9783662611654
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::15c240783ac62f557699317e346e848e
https://doi.org/10.1007/978-3-662-61166-1_32
https://doi.org/10.1007/978-3-662-61166-1_32
Autor:
Lisa Sauermann, Eric Müller
Publikováno v:
50 Jahre Bundeswettbewerb Mathematik ISBN: 9783662611654
Bundeswettbewerb Mathematik ISBN: 9783662495391
Bundeswettbewerb Mathematik ISBN: 9783662495391
In der ersten Aufgabe der 2. Runde des Bundeswettbewerbs Mathematik 2006 werden gewisse Nummerierungen von schwarzen und weisen Sektoren in einem Kreis untersucht. Dieser Beitrag beginnt mit der Losung dieser Aufgabe und behandelt anschliesend eine V
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0af509af0bf0ea7c25f55ed7d9db6d65
https://doi.org/10.1007/978-3-662-61166-1_26
https://doi.org/10.1007/978-3-662-61166-1_26