Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Lisa Lorentzen"'
Autor:
Lisa Lorentzen
Publikováno v:
Continued fractions and orthogonal functions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::838bf5e74500e798131a5d6808d2c6f6
https://doi.org/10.1201/9781003072591-12
https://doi.org/10.1201/9781003072591-12
Autor:
Lisa Lorentzen
Publikováno v:
Continued fractions and orthogonal functions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2a869851eebe23a92a4c438167d0dd54
https://doi.org/10.1201/9781003072591-13
https://doi.org/10.1201/9781003072591-13
Autor:
Lisa Lorentzen
Publikováno v:
Modern Trends in Constructive Function Theory. :57-71
Autor:
Lisa Lorentzen
Publikováno v:
Journal of Approximation Theory. 197:1-8
Let K ( a n / b n ) be a continued fraction with elements ( a n , b n ) picked randomly and independently from ( C ∖ { 0 } ) × C according to some probability distribution μ . We show that K ( a n / b n ) converges generally with probability 1 un
Autor:
Lisa Lorentzen
Publikováno v:
Ramanujan 125. :123-130
Autor:
Lisa Lorentzen
Publikováno v:
Constructive Approximation. 38:171-191
Let K(an/bn) be a continued fraction with elements (an,bn) picked randomly and independently from \((\mathbb{C}\setminus\{0\})\times\mathbb{C}\) according to some probability distribution μ. We find sufficient conditions on μ for K(an/bn) to conver
Autor:
Lisa Lorentzen
Publikováno v:
Applied Numerical Mathematics. 60:1364-1370
The purpose of this paper is to tell how continued fraction expansions of functions are derived, how they relate to Pade approximation, and how they can improve Pade approximants.
Autor:
Lisa Lorentzen
Publikováno v:
The Ramanujan Journal. 16:83-95
We prove that the Ramanujan AGM fraction diverges if |a|=|b| with a2≠b2. Thereby we prove two conjectures posed by J. Borwein and R. Crandall. We also demonstrate a method for accelerating the convergence of this continued fraction when it converge
Autor:
Lisa Lorentzen
Publikováno v:
Transactions of the American Mathematical Society. 360:4287-4304
We prove that if the continued fraction K(a n /1) has circular twin value sets (V 0 , V 1 ), then K(a n /1) converges except in some very special cases. The results generalize previous work by Jones and Thron.
Autor:
Lisa Lorentzen
Publikováno v:
The Ramanujan Journal. 17:369-385
We present an idea on how Ramanujan found some of his beautiful continued fraction identities. Or more to the point: why he chose the ones he wrote down among all possible identities.