Zobrazeno 1 - 10
of 349
pro vyhledávání: '"Lipschitz geometry"'
We study metric properties of manifolds with conic singularities and present a natural interplay between metrically conic and metrically asymptotically conic behaviour. As a consequence, we prove that a singular sub-manifold is Lipschitz normally emb
Externí odkaz:
http://arxiv.org/abs/2410.05457
Autor:
Cherik, Yenni
Let $(X, 0)$ be a normal complex surface germ embedded in $(\mathbb{C}^n, 0)$, and denote by $\mathfrak{m}$ the maximal ideal of the local ring $\mathcal{O}_{X,0}$. In this paper, we associate to each $\mathfrak{m}$-primary ideal $I$ of $\mathcal{O}_
Externí odkaz:
http://arxiv.org/abs/2407.14265
Autor:
Birbrair, Lev, Medeiros, Davi Lopes
We study the ambient Lipschitz geometry of semialgebraic surfaces. It was discovered in \cite{BBG} that ambient Lipschitz Geometry is different from the outer Lipschtz geometry. We show that two surface germs in $\mathbb{R}^3$, Lipschitz normally emb
Externí odkaz:
http://arxiv.org/abs/2311.18570
Autor:
Costa, André, Souza, Emanoel
We study outer Lipschitz geometry of real semialgebraic or, more general, definable in a polynomially bounded o-minimal structure over the reals, circular surface germs, i.e., surfaces which link is homeomorphic to $S^1$. In particular, we show there
Externí odkaz:
http://arxiv.org/abs/2312.04446
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sampaio, José Edson
In this article, we prove that for a definable set in an o-minimal structure with connected link (at 0 or infinity), the inner distance of the link is equivalent to the inner distance of the set restricted to the link. With this result, we obtain sev
Externí odkaz:
http://arxiv.org/abs/2305.11830
The main result states that a connected conic singular sub-manifold of a Riemannian manifold, compact when the ambient manifold is non-Euclidean, is Lipschitz Normally Embedded: the outer and inner metric space structures are metrically equivalent. W
Externí odkaz:
http://arxiv.org/abs/2306.14854
Autor:
Birbrair, Lev, Gabrielov, Andrei
We present here basic results in Lipschitz Geometry of semialgebraic surface germs. Although bi-Lipschitz classification problem of surface germs with respect to the inner metric was solved long ago, classification with respect to the outer metric re
Externí odkaz:
http://arxiv.org/abs/2212.05511
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.