Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Lipor, John"'
We consider the problem of active learning in the context of spatial sampling for level set estimation (LSE), where the goal is to localize all regions where a function of interest lies above/below a given threshold as quickly as possible. We present
Externí odkaz:
http://arxiv.org/abs/2310.11985
Publikováno v:
In Journal of Ocean Engineering and Science January 2024
Publikováno v:
In Geothermics May 2023 110
Subspace clustering is the unsupervised grouping of points lying near a union of low-dimensional linear subspaces. Algorithms based directly on geometric properties of such data tend to either provide poor empirical performance, lack theoretical guar
Externí odkaz:
http://arxiv.org/abs/1709.04744
Autor:
Lipor, John, Balzano, Laura
Publikováno v:
Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:2130-2139 (2017)
Many clustering problems in computer vision and other contexts are also classification problems, where each cluster shares a meaningful label. Subspace clustering algorithms in particular are often applied to problems that fit this description, for e
Externí odkaz:
http://arxiv.org/abs/1608.02146
Autor:
Lipor, John
Multiple-input multiple-output (MIMO) radar employs orthogonal or partially correlated transmit signals to achieve performance benefits over its phased-array counterpart. It has been shown that MIMO radar can achieve greater spatial resolution, impro
Externí odkaz:
http://hdl.handle.net/10754/291103
Adaptive sampling theory has shown that, with proper assumptions on the signal class, algorithms exist to reconstruct a signal in $\mathbb{R}^{d}$ with an optimal number of samples. We generalize this problem to the case of spatial signals, where the
Externí odkaz:
http://arxiv.org/abs/1509.08387
Autor:
Lipor, John, Balzano, Laura
Publikováno v:
In Pattern Recognition August 2020 104
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lipor, John1 (AUTHOR) lipor@pdx.edu, Hong, David2 (AUTHOR), Tan, Yan Shuo3 (AUTHOR), Balzano, Laura4 (AUTHOR)
Publikováno v:
Information & Inference: A Journal of the IMA. Mar2021, Vol. 10 Issue 1, p73-107. 35p.