Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Lior Gishboliner"'
Publikováno v:
Discrete Analysis (2022)
Small doubling, atomic structure and $\ell$-divisible set families, Discrete Analysis 2022:11, 16 pp. The following fact is a well-known and simple illustration of the power of linear algebra in solving combinatorial problems. Let $\mathcal A$ be a
Externí odkaz:
https://doaj.org/article/1fe5976221c6463c8ea23190ac3e84b4
Publikováno v:
Journal of Combinatorial Theory. Series B, 158
Let f(n,v,e) denote the maximum number of edges in a 3-uniform hypergraph not containing e edges spanned by at most v vertices. One of the most influential open problems in extremal combinatorics then asks, for a given number of edges e≥3, what is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c7cafc305c49dd022bb4c67726e4dab
https://resolver.caltech.edu/CaltechAUTHORS:20221031-575177800.7
https://resolver.caltech.edu/CaltechAUTHORS:20221031-575177800.7
Publikováno v:
Combinatorica
For positive integers s, t, r, let K(r)s,t denote the r-uniform hypergraph whose vertex set is the union of pairwise disjoint sets X,Y1,…,Yt, where |X|=s and |Y1|=⋯=|Yt|=r−1, and whose edge set is {{x}∪Yi:x∈X,1≤i≤t}. The study of the Tu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e2a3f93d38abf0f4003c3b1c217b9091
Publikováno v:
Random Structures & Algorithms. 60:289-307
Publikováno v:
Forum of Mathematics, Sigma, 10
In 1999, Jacobson and Lehel conjectured that, for k >= 3, every k-regular Hamiltonian graph has cycles of Theta(n) many different lengths. This was further strengthened by Verstraete, who asked whether the regularity can be replaced with the weaker c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::877a80ee14dc41a7a982a81f2a99d5dc
Publikováno v:
Journal of Graph Theory, 103 (4)
We propose the following extension of Dirac's theorem: if G is a graph with n >= 3 vertices and minimum degree delta(G) >= n/2, then in every orientation of G there is a Hamilton cycle with at least δ(G) edges oriented inthe same direction. We prove
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d9b74d8f327fdc96b517ea26690b502
Publikováno v:
Israel Journal of Mathematics. 235:63-77
The minrank of a graph G on the set of vertices [n] over a field $$\mathbb{F}$$ is the minimum possible rank of a matrix $$M \in \mathbb{F}^{{n}\times{n}}$$ with nonzero diagonal entries such that Mi,j = 0 whenever i and j are distinct nonadjacent ve
Autor:
Lior Gishboliner
Publikováno v:
European Journal of Combinatorics. 103:103516
Publikováno v:
Trends in Mathematics ISBN: 9783030838225
Let \(\mathcal {F}\subset 2^{[n]}\) such that the intersection of any two members of \(\mathcal {F}\) has size divisible by \(\ell \). By the famous Eventown theorem, if \(\ell =2\) then \(|\mathcal {F}|\le 2^{\lfloor n/2\rfloor }\), and this bound c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1dd32ed996e760f6b7eafa025e5e4bdd
https://doi.org/10.1007/978-3-030-83823-2_58
https://doi.org/10.1007/978-3-030-83823-2_58