Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Linzi, Alessandro"'
Autor:
Linzi, Alessandro
In 1957 M.\ Krasner described a complete valued field $(K,v)$ via the projective limit of a system of certain structures, called hyperfields, associated to $(K,v)$. We put this result in purely category-theoretic terms by translating into a limit con
Externí odkaz:
http://arxiv.org/abs/2309.16404
Autor:
Cangiotti, Nicolò, Linzi, Alessandro
Let $\mathcal{P}$ be the set of points of a finite-dimensional projective space over a local field $F$, endowed with the topology $\tau$ naturally induced from the canonical topology of $F$. Intuitively, continuous incidence abelian group structures
Externí odkaz:
http://arxiv.org/abs/2305.03772
Autor:
Linzi, Alessandro
The main aim of this article is to study and develop valuation theory for Krasner hyperfields. In analogy with classical valuation theory for fields, we generalise the formalism of valuation rings to describe equivalence of valuations on hyperfields.
Externí odkaz:
http://arxiv.org/abs/2301.08639
Autor:
Linzi, Alessandro, Touchard, Pierre
One can associate to a valued field an inverse system of valued hyperfields $(\mathcal{H}_i)_{i \in I}$ in a natural way. We investigate when, conversely, such a system arise from a valued field. First, we extend a result of Krasner by showing that t
Externí odkaz:
http://arxiv.org/abs/2211.05082
We introduce and study in detail the notion of compatibility between valuations and orderings in real hyperfields. We investigate their relation with valuations and orderings induced on factor and residue hyperfields. Much of the theory from real fie
Externí odkaz:
http://arxiv.org/abs/2106.04978
Autor:
Linzi, Alessandro, Stojałowska, Hanna
We study the concept of hypervaluations on hyperfields. In particular, we show that any hypervaluation from a hyperfield onto an ordered canonical hypergroup is the composition of a hypervaluation onto an ordered abelian group (which induces the same
Externí odkaz:
http://arxiv.org/abs/2009.08954
Based on the theory of ball spaces introduced by Kuhlmann and Kuhlmann we introduce and study Caristi-Kirk and Oettli-Th\'era ball spaces. We show that if the underlying metric space is complete, then these have a very strong property: every ball con
Externí odkaz:
http://arxiv.org/abs/1901.03853
Publikováno v:
In Journal of Algebra 1 December 2022 611:399-421
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kędzierski, Dawid Edmund1 (AUTHOR), Linzi, Alessandro2 (AUTHOR) alessandro.linzi@ung.si, Stojałowska, Hanna1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Feb2023, Vol. 11 Issue 3, p779. 20p.