Zobrazeno 1 - 10
of 1 122
pro vyhledávání: '"Lind, Martin"'
Autor:
Lind, Martin
We prove a discrepancy estimate related to the sequence of fractional parts of $b^n/n$. This improves an earlier result of Cilleruelo et al.
Externí odkaz:
http://arxiv.org/abs/2309.14748
Autor:
Lind, Martin
For $b\in\mathbb{N}, b\ge2$ we determine the limit points of certain subsets of $$ \left\{\frac{b^n\pmod{n}}{n}:n\in\mathbb{N}\right\}. $$ As a consequence, we obtain the density of the latter set in $[0,1]$, a result first established in 2013 by Cil
Externí odkaz:
http://arxiv.org/abs/2308.14354
Autor:
Lind, Martin I.1,2 (AUTHOR) martin.lind@ebc.uu.se, Mautz, Brian S.1,3 (AUTHOR), Carlsson, Hanne1,4 (AUTHOR), Hinas, Andrea5 (AUTHOR), Gudmunds, Erik5,6 (AUTHOR), Maklakov, Alexei A.1,4 (AUTHOR)
Publikováno v:
Aging Cell. Nov2024, Vol. 23 Issue 11, p1-8. 8p.
Autor:
Lind, Martin
We re-examine through an example the connection between the curvature of the boundary of a set, and the decay at infinity of the Fourier transform of its characteristic function. Let $B_p\subset\mathbb{R}^2$ denote the unit ball of $\mathbb{R}^2$ in
Externí odkaz:
http://arxiv.org/abs/2208.07837
Autor:
Kjeldsen, Troels, Hvidt, Katrine Jessen, Bohn, Marie Bagger, Mygind-Klavsen, Bjarne, Lind, Martin, Semciw, Adam Ivan, Mechlenburg, Inger
Publikováno v:
In Physiotherapy June 2024 123:69-80
Autor:
Lind, Martin
We consider a certain equidistributed sequence of rational numbers constructed from the primes. In particular, we determine the sharp convergence rate for the star discrepancy of said sequence. Our arguments are based on well-known discrepancy estima
Externí odkaz:
http://arxiv.org/abs/2107.13086
Autor:
Lind, Martin
En tanke som ligger till grund för denna studie är de svårigheter som en person med social ångest kan ha inför att söka hjälp hos en kurator eller terapeut, detta då hjälpsökandet i sig kan innebära en stor social utmaning. Ett potentiellt
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159638
In this note, we introduce the notion of modulus of $p$-variation for a function of a real variable, and show that it serves in at least two important problems, namely, the uniform convergence of Fourier series and computation of certain $K$-function
Externí odkaz:
http://arxiv.org/abs/2011.07411
Autor:
Lind, Martin
When applying the quasi-Monte Carlo (QMC) method of numerical integration of univariate functions, Koksma's inequality provides a basic estimate of the error in terms of the discrepancy of the used evaluation points and the total variation of the int
Externí odkaz:
http://arxiv.org/abs/2002.03112