Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Lihong Zhi"'
Publikováno v:
Journal of Systems Science and Complexity. 36:866-883
Autor:
Nan Li, Lihong Zhi
Publikováno v:
Numerical Algorithms. 91:19-50
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2021, 102, pp.259-278. ⟨10.1016/j.jsc.2019.10.018⟩
Journal of Symbolic Computation, 2021, 102, pp.259-278. ⟨10.1016/j.jsc.2019.10.018⟩
Journal of Symbolic Computation, Elsevier, 2021, 102, pp.259-278. ⟨10.1016/j.jsc.2019.10.018⟩
Journal of Symbolic Computation, 2021, 102, pp.259-278. ⟨10.1016/j.jsc.2019.10.018⟩
Let f = ( f 1 , … , f s ) be a sequence of polynomials in Q [ X 1 , … , X n ] of maximal degree D and V ⊂ C n be the algebraic set defined by f and r be its dimension. The real radical 〈 f 〉 r e associated to f is the largest ideal which de
Autor:
Lihong Zhi, Chu Wang
Publikováno v:
Journal of Systems Science and Complexity. 33:1632-1655
This paper generalizes the factorization theorem of Gouveia, Parrilo and Thomas to a broader class of convex sets. Given a general convex set, the authors define a slack operator associated to the set and its polar according to whether the convex set
Publikováno v:
Mathematics of Computation. 89:879-909
Publikováno v:
Journal of Systems Science and Complexity. 32:158-184
Let f, g1,..., gs be polynomials in R[X1,..., Xn]. Based on topological properties of generalized critical values, the authors propose a method to compute the global infimum f* of f over an arbitrary given real algebraic set V = {x ∈ Rn | g1(x) = 0
Publikováno v:
Journal of Symbolic Computation.
Publikováno v:
Journal of Symbolic Computation. 72:1-20
For an ideal I with a positive-dimensional real variety V R ( I ) , based on moment relaxations, we study how to compute a Pommaret basis which is simultaneously a Grobner basis of an ideal J generated by the kernel of a truncated moment matrix and s
Publikováno v:
Infinite Dimensional Analysis, Quantum Probability and Related Topics. 23:2050020
Strassen’s theorem circa 1965 gives necessary and sufficient conditions on the existence of a probability measure on two product spaces with given support and two marginals. In the case where each product space is finite, Strassen’s theorem is re
Publikováno v:
ISSAC '18-The 2018 ACM on International Symposium on Symbolic and Algebraic Computation
ISSAC '18-The 2018 ACM on International Symposium on Symbolic and Algebraic Computation, Jul 2018, New-York, United States. pp.351-358, ⟨10.1145/3208976.3209002⟩
ISSAC
ISSAC '18-The 2018 ACM on International Symposium on Symbolic and Algebraic Computation, Jul 2018, New-York, United States. pp.351-358, ⟨10.1145/3208976.3209002⟩
ISSAC
International audience; Let f= (f1, ..., fs) be a sequence of polynomials in Q[X1,...,Xn] of maximal degree D and V⊂ Cn be the algebraic set defined by f and r be its dimension. The real radical re < f > associated to f is the largest ideal which d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::29d4fdef172d9f5a93e981825baef2ee
https://hal.inria.fr/hal-01956596/file/SaYaZhi18.pdf
https://hal.inria.fr/hal-01956596/file/SaYaZhi18.pdf