Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Lihang, Hou"'
Let $2.O_{m+1}$ denote the doubled Odd graph with vertex set $X$ on a set of cardinality $2m+1$, where $m\geq 1$. Fix a vertex $x_0\in X$. Let $\mathcal{A}:=\mathcal{A}(x_0)$ denote the centralizer algebra of the stabilizer of $x_0$ in the automorphi
Externí odkaz:
http://arxiv.org/abs/2207.01838
Let $O_{m+1}$ denote the Odd graph on a set of cardinality $2m+1$, where $m$ is a positive integer. Denote by $X$ its vertex set and by $T:=T(x_0)$ its Terwilliger algebra with respect to any fixed vertex $x_0\in X$. In this paper, we first prove tha
Externí odkaz:
http://arxiv.org/abs/2207.01265
Publikováno v:
Discrete Mathematics, Algorithms and Applications.
Let [Formula: see text] be a finite undirected simple connected graph with vertex set [Formula: see text] and edge set [Formula: see text]. A vertex [Formula: see text] resolves two elements (vertices or edges) [Formula: see text] if [Formula: see te
Publikováno v:
Journal of Algebraic Combinatorics. 56:229-248
Publikováno v:
Algorithmic Aspects in Information and Management ISBN: 9783031160806
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::792f44bdb09cd4c60134089b0e5d605f
https://doi.org/10.1007/978-3-031-16081-3_31
https://doi.org/10.1007/978-3-031-16081-3_31
Publikováno v:
Discrete Mathematics. 345:113044
Publikováno v:
Optimization Letters. 14:249-257
A subset S of vertices in a graph G is called a resolving set for G if for arbitrary two distinct vertices $$u, v\in V$$, there exists a vertex x from S such that the distances $$d(u, x)\ne d(v, x)$$. The metric dimension of G is the minimum cardinal
Publikováno v:
Communications in Algebra. 47:2220-2226
Let F denote a field with characteristic not 2 and fix a nonzero q∈F such that q2≠1. Let Uq(sl2) be the quantum enveloping algebra over F and let x,y±1,z be its equitable generators. Denote by Uq∨ ...
Publikováno v:
Linear and Multilinear Algebra. 68:622-634
Let F denote an algebraically closed field, and let V denote a vector space over F with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations A,A∗ on V...
Publikováno v:
Acta Mathematicae Applicatae Sinica, English Series. 34:281-292
Let Γ denote the folded (2D + 1)-cube with vertex set X and diameter D ≥ 3. Fix x ∈ X. We first define a partial order ≤ on X as follows. For y, z ∈ X let y ≤ z whenever ∂(x, y) + ∂(y, z) = ∂(x, z). Let R (resp. L) denote the raising