Zobrazeno 1 - 10
of 164
pro vyhledávání: '"Liedloff, Mathieu"'
The question to enumerate all inclusion-minimal connected dominating sets in a graph of order $n$ in time significantly less than $2^n$ is an open question that was asked in many places. We answer this question affirmatively, by providing an enumerat
Externí odkaz:
http://arxiv.org/abs/2205.00086
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Garnero, Valentin, Junosza-Szaniawski, Konstanty, Liedloff, Mathieu, Montealegre, Pedro, Rzążewski, Paweł
In this paper we consider a variation of a recoloring problem, called the Color-Fixing. Let us have some non-proper $r$-coloring $\varphi$ of a graph $G$. We investigate the problem of finding a proper $r$-coloring of $G$, which is "the most similar"
Externí odkaz:
http://arxiv.org/abs/1607.06911
Autor:
Bazgan, Cristina, Brankovic, Ljiljana, Casel, Katrin, Fernau, Henning, Jansen, Klaus, Lampis, Michael, Liedloff, Mathieu, Monnot, Jérôme, Paschos, Vangelis Th.
In this paper we study combinatorial and algorithmic resp. complexity questions of upper domination, i.e., the maximum cardinality of a minimal dominating set in a graph. We give a full classification of the related maximisation and minimisation prob
Externí odkaz:
http://arxiv.org/abs/1506.07260
Autor:
Liedloff, Mathieu
Les premiers algorithmes exacts exponentiels pour résoudre des problèmes NP-difficiles datent des années soixante. Ces dernières années ont vu un intérêt croissant pour la conception de tels algorithmes tout comme pour l'amélioration de la pr
Externí odkaz:
http://www.theses.fr/2007METZ027S/document
Thèse de doctorat : Informatique : Metz : 2007.
Thèse soutenue sur ensemble de travaux. Bibliogr. p. [177]-194. Index p. [189]-192. Liste des symboles p. [193]-194.
Thèse soutenue sur ensemble de travaux. Bibliogr. p. [177]-194. Index p. [189]-192. Liste des symboles p. [193]-194.
In this paper we give upper bounds on the number of minimal separators and potential maximal cliques of graphs w.r.t. two graph parameters, namely vertex cover ($\operatorname{vc}$) and modular width ($\operatorname{mw}$). We prove that for any graph
Externí odkaz:
http://arxiv.org/abs/1404.3882
After the number of vertices, Vertex Cover is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex C
Externí odkaz:
http://arxiv.org/abs/1305.0433
Publikováno v:
In Theoretical Computer Science 6 September 2019 783:41-52
Publikováno v:
In Discrete Applied Mathematics 31 July 2019 265:69-85