Zobrazeno 1 - 10
of 889
pro vyhledávání: '"Liebenau A"'
Publikováno v:
Risk Management and Healthcare Policy, Vol Volume 13, Pp 285-293 (2020)
Inken Padberg,1 Benjamin Hotter,1,2 Andrea Liebenau,1 Petra Knispel,1,3 Sophie Lehnerer,1,2 Sabine Heel,4 Ian Wellwood,5 Andreas Meisel1–3 1Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Corporate Member of Freie Uni
Externí odkaz:
https://doaj.org/article/3ca664f8630048c79d73befccd9c72fc
Autor:
Altman, Daniel, Liebenau, Anita
We prove that suitably generic pairs of linear equations on an even number of variables are uncommon. This verifies a conjecture of Kam\v{c}ev, Morrison and the second author. Moreover, we prove that any large system containing such a $(2\times k)$-s
Externí odkaz:
http://arxiv.org/abs/2404.18908
We address a problem which is a generalization of Tur\'an-type problems recently introduced by Imolay, Karl, Nagy and V\'ali. Let $F$ be a fixed graph and let $G$ be the union of $k$ edge-disjoint copies of $F$, namely $G = \mathbin{\dot{\cup}}_{i=1}
Externí odkaz:
http://arxiv.org/abs/2402.05060
Given a family $\mathcal{H}$ of graphs, a graph $G$ is called $\mathcal{H}$-universal if $G$ contains every graph of $\mathcal{H}$ as a subgraph. Following the extensive research on universal graphs of small size for bounded-degree graphs, Alon asked
Externí odkaz:
http://arxiv.org/abs/2309.05468
Autor:
Bishnoi, Anurag, Boyadzhiyska, Simona, Clemens, Dennis, Gupta, Pranshu, Lesgourgues, Thomas, Liebenau, Anita
A graph $G$ is said to be $q$-Ramsey for a $q$-tuple of graphs $(H_1,\ldots,H_q)$, denoted by $G\to_q(H_1,\ldots,H_q)$, if every $q$-edge-coloring of $G$ contains a monochromatic copy of $H_i$ in color $i,$ for some $i\in[q]$. Let $s_q(H_1,\ldots,H_q
Externí odkaz:
http://arxiv.org/abs/2109.02877
Publikováno v:
The Quarterly Journal of Mathematics, Volume 74, Issue 3, September 2023, Pages 957-974
A system of linear forms $L=\{L_1,\ldots,L_m\}$ over $\mathbb{F}_q$ is said to be Sidorenko if the number of solutions to $L=0$ in any $A \subseteq \mathbb{F}_{q}^n$ is asymptotically as $n\to\infty$ at least the expected number of solutions in a ran
Externí odkaz:
http://arxiv.org/abs/2107.14413
A system of linear equations $L$ over $\mathbb{F}_q$ is common if the number of monochromatic solutions to $L$ in any two-colouring of $\mathbb{F}_q^n$ is asymptotically at least the expected number of monochromatic solutions in a random two-colourin
Externí odkaz:
http://arxiv.org/abs/2106.08986
We say that $G \to (F,H)$ if, in every edge colouring $c: E(G) \to \{1,2\}$, we can find either a $1$-coloured copy of $F$ or a $2$-coloured copy of $H$. The well-known Kohayakawa--Kreuter conjecture states that the threshold for the property $G(n,p)
Externí odkaz:
http://arxiv.org/abs/2010.11933
Publikováno v:
Advances in Combinatorics 2022:1, 36pp
We prove an asymptotic formula for the number of $k$-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of $d$-regular $k$-uniform hypergraphs
Externí odkaz:
http://arxiv.org/abs/2008.07757
Autor:
Liebenau, Anita, Wormald, Nick
We provide asymptotic formulae for the numbers of bipartite graphs with given degree sequence, and of loopless digraphs with given in- and out-degree sequences, for a wide range of parameters. Our results cover medium range densities and close the ga
Externí odkaz:
http://arxiv.org/abs/2006.15797