Zobrazeno 1 - 10
of 390
pro vyhledávání: '"Lie models"'
Autor:
Petr, Ivo, Hlavatý, Ladislav
T-duality and its generalizations are widely recognized either as symmetries or solution-generating techniques in string theory. Recently introduced Jacobi-Lie T-plurality is based on Leibniz algebras whose structure constants ${f_{ab}}^c, {f_c}^{ab}
Externí odkaz:
http://arxiv.org/abs/2407.09214
Autor:
Hlavatý, Ladislav, Petr, Ivo
Poisson-Lie T-duality/plurality was recently generalized to Jacobi-Lie T-plurality formulated in terms of Double Field Theory and based on Leibniz algebras given by structure coefficients $f_{ab}{}^{c},f_{c}{}^{ab},$ and $Z_a,Z^a$. We investigate thr
Externí odkaz:
http://arxiv.org/abs/2310.16126
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Given $X$ a finite nilpotent simplicial set, consider the classifying fibrations $$ X\to Baut_G^*(X)\to Baut_G(X),\qquad X\to Z\to Baut_{\pi}^*(X), $$ where $G$ and $\pi$ denote, respectively, subgroups of the free and pointed homotopy classes of fre
Externí odkaz:
http://arxiv.org/abs/2103.06543
Publikováno v:
In Advances in Mathematics 25 June 2022 402
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach – in terms of Lie algebras – to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topo
Publikováno v:
Fund. Math. 246-3 (2019) 289-300
R. Lawrence and D. Sullivan have constructed a Lie model for an interval from the geometrical idea of flat connections and flows of gauge transformations. Their model supports an action of the symmetric group $\Sigma_2$ reflecting the geometrical sym
Externí odkaz:
http://arxiv.org/abs/1802.01121
Publikováno v:
manuscripta math. (2019) 159: 161
Let $(L,d)$ be a differential graded Lie algebra, where $L=L(V)$ is free as graded Lie algebra and $V=V_{\geq 0}$ is a finite type graded vector space. We prove that the injection of $(L,d)$ into its completion $(\widehat{L},d)$ is a quasi-isomorphis
Externí odkaz:
http://arxiv.org/abs/1706.09194
Publikováno v:
Canad. Math. Bull. 60-3 (2017) 470-477
In a previous work, we have associated a complete differential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we have also a realization functor from the category of complete differential graded Lie algebras to th
Externí odkaz:
http://arxiv.org/abs/1606.08794