Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Lidia Garrucho"'
Autor:
Kushibar, Kaisar, Campello, Víctor Manuel, Moras, Lidia Garrucho, Linardos, Akis, Radeva, Petia, Lekadir, Karim
Uncertainty estimation in deep learning has become a leading research field in medical image analysis due to the need for safe utilisation of AI algorithms in clinical practice. Most approaches for uncertainty estimation require sampling the network
Externí odkaz:
http://arxiv.org/abs/2203.08878
Autor:
Lidia Garrucho, Kaisar Kushibar, Richard Osuala, Oliver Diaz, Alessandro Catanese, Javier del Riego, Maciej Bobowicz, Fredrik Strand, Laura Igual, Karim Lekadir
Publikováno v:
Frontiers in Oncology, Vol 12 (2023)
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensi
Externí odkaz:
https://doaj.org/article/cd7cf61eba174b9aafd1a4d0cd05c641
Autor:
Richard Osuala, Grzegorz Skorupko, Noussair Lazrak, Lidia Garrucho, Eloy García, Smriti Joshi, Socayna Jouide, Michael Rutherford, Fred Prior, Kaisar Kushibar, Oliver Díaz, Karim Lekadir
Publikováno v:
Journal of Medical Imaging. 10
Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models in medical imaging. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are comple
Autor:
Richard Osuala, Kaisar Kushibar, Lidia Garrucho, Akis Linardos, Zuzanna Szafranowska, Stefan Klein, Ben Glocker, Oliver Diaz, Karim Lekadir
Publikováno v:
Medical Image Analysis. 84
Despite technological and medical advances, the detection, interpretation, and treatment of cancer based on imaging data continue to pose significant challenges. These include inter-observer variability, class imbalance, dataset shifts, inter- and in
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164514
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bed4cf9d95a1528368087af4c40b9d08
https://doi.org/10.1007/978-3-031-16452-1_49
https://doi.org/10.1007/978-3-031-16452-1_49
Publikováno v:
Artificial Intelligence in Medicine. 132:102386
Computer-aided detection systems based on deep learning have shown great potential in breast cancer detection. However, the lack of domain generalization of artificial neural networks is an important obstacle to their deployment in changing clinical
Autor:
Oliver Diaz, Laura Igual, Petia Radeva, Akis Linardos, Polyxeni Gkontra, Kaisar Kushibar, Lidia Garrucho, Fred W. Prior, Richard Osuala, Karim Lekadir
Publikováno v:
Dipòsit Digital de la UB
Universidad de Barcelona
Universidad de Barcelona
The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f8a7294e75a73231d9f91872c655450
http://hdl.handle.net/2445/184093
http://hdl.handle.net/2445/184093
Publikováno v:
Medical Image Analysis
Autor:
BARD, JENNIFER S.1,2
Publikováno v:
San Diego Law Review. Nov/dec2023, Vol. 60 Issue 4, p671-775. 105p.
Autor:
Garrucho, Lidia, Kushibar, Kaisar, Osuala, Richard, Diaz, Oliver, Catanese, Alessandro, del Riego, Javier, Bobowicz, Maciej, Strand, Fredrik, Igual, Laura, Lekadir, Karim
Publikováno v:
Frontiers in Oncology; 1/23/2023, Vol. 13, p1-17, 17p, 3 Black and White Photographs, 5 Charts, 4 Graphs