Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Liard, Quentin"'
Gross-Pitaevskii and Hartree hierarchies are infinite systems of coupled PDEs emerging naturally from the mean field theory of Bose gases. Their solutions are known to be related to an initial value problem, respectively the Gross-Pitaevskii and Hart
Externí odkaz:
http://arxiv.org/abs/1802.09041
Autor:
Liard, Quentin
We show under general assumptions that the mean-field approximation for quan- tum many-boson systems is correct. Our contribution unifies and improves on most of the known results. The proof uses general properties of quantization in infinite dimensi
Externí odkaz:
http://arxiv.org/abs/1609.06254
Autor:
Ammari, Zied, Liard, Quentin
In this paper, we give a uniqueness result to a transport equation fulfilled by probability measure on a infinite dimensional Hilbert space. Main arguments are based on projective aspects and a probabilistic representation of the solutions. It extend
Externí odkaz:
http://arxiv.org/abs/1602.06716
Autor:
Pawilowski, Boris, Liard, Quentin
We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the W
Externí odkaz:
http://arxiv.org/abs/1402.4261
Autor:
Liard, Quentin
Publikováno v:
In Journal of Functional Analysis 15 August 2017 273(4):1397-1442
Autor:
Ammari, Zied, Liard, Quentin
Publikováno v:
Discrete and Continuous Dynamical Systems-Series A
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2018, 38 (2), pp.723-748. ⟨10.3934/dcds.2018032⟩
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2018, 38 (2), pp.723-748. 〈10.3934/dcds.2018032〉
Discrete and Continuous Dynamical Systems-Series A, 2018, 38 (2), pp.723-748. ⟨10.3934/dcds.2018032⟩
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2018, 38 (2), pp.723-748. ⟨10.3934/dcds.2018032⟩
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2018, 38 (2), pp.723-748. 〈10.3934/dcds.2018032〉
Discrete and Continuous Dynamical Systems-Series A, 2018, 38 (2), pp.723-748. ⟨10.3934/dcds.2018032⟩
In this paper, we give a uniqueness result to a transport equation fulfilled by probability measure on a infinite dimensional Hilbert space. Main arguments are based on projective aspects and a probabilistic representation of the solutions. It extend
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01e60c9d2ec3b490e1fc194a7444d26a
https://hal.archives-ouvertes.fr/hal-01275164v3/document
https://hal.archives-ouvertes.fr/hal-01275164v3/document
Autor:
Liard, Quentin
Dans cette thèse, nous aborderons l'approximation de champ moyen pour des particules bosoniques. Pour un certain nombre d'états quantiques, la dérivation de la limite de champ moyen est connue, et il semble naturel d'étendre ces travaux à un cad
Externí odkaz:
http://www.theses.fr/2015REN1S126/document
Autor:
Liard , Quentin
Publikováno v:
Equations aux dérivées partielles [math.AP]. Université Rennes 1, 2015. Français. ⟨NNT : 2015REN1S126⟩
Equations aux dérivées partielles [math.AP]. Université Rennes 1, 2015. Français. 〈NNT : 2015REN1S126〉
Equations aux dérivées partielles [math.AP]. Université de Rennes, 2015. Français. ⟨NNT : 2015REN1S126⟩
Equations aux dérivées partielles [math.AP]. Université Rennes 1, 2015. Français. 〈NNT : 2015REN1S126〉
Equations aux dérivées partielles [math.AP]. Université de Rennes, 2015. Français. ⟨NNT : 2015REN1S126⟩
In this thesis, we justify the mean field approximation in a general framework for bosonic systems. The derivation of mean field dynamics is known for some specific quantum states. Therefore it is natural to expect the extension of these results for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::48fc2dae8bd347018383d523125582de
https://tel.archives-ouvertes.fr/tel-01269730v2/document
https://tel.archives-ouvertes.fr/tel-01269730v2/document
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.