Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Liao Menglan"'
Autor:
Liao, Menglan
A degenerate wave equation with time-varying delay in the boundary control input is considered. The well-posedness of the system is established by applying the semigroup theory. The boundary stabilization of the degenerate wave equation is concerned
Externí odkaz:
http://arxiv.org/abs/2410.15258
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 1569-1591 (2020)
In this paper, we study the fractional p-Laplacian evolution equation with arbitrary initial energy,
Externí odkaz:
https://doaj.org/article/e7fee11b2fd5490ea137ec916f538909
Autor:
Liao, Menglan
In this paper, a class of variable-coefficient wave equations equipped with time-dependent damping and the nonlinear source is considered. We show that the total energy of the system decays to zero with an explicit and precise decay rate estimate und
Externí odkaz:
http://arxiv.org/abs/2304.11522
Autor:
Liao, Menglan, Tan, Zhong
Publikováno v:
SCIENCE CHINA Mathematics, 2022, 65
This paper deals with the following Petrovsky equation with damping and nonlinear source \[u_{tt}+\Delta^2 u-M(\|\nabla u\|_2^2)\Delta u-\Delta u_t+|u_t|^{m(x)-2}u_t=|u|^{p(x)-2}u\] under initial-boundary value conditions, where $M(s)=a+ bs^\gamma$ i
Externí odkaz:
http://arxiv.org/abs/2107.00273
Autor:
Liao, Menglan, Tan, Zhong
The goal of the present paper is to study the viscoelastic wave equation with the time delay \[ |u_t|^\rho u_{tt}-\Delta u-\Delta u_{tt}+\int_0^tg(t-s)\Delta u(s)ds+\mu_1u_t(x,t)+\mu_2 u_t(x,t-\tau)=b|u|^{p-2}u\] under initial boundary value conditio
Externí odkaz:
http://arxiv.org/abs/2105.03862
The goal of the present paper is to study the asymptotic behavior of solutions for the viscoelastic wave equation with variable exponents \[ u_{tt}-\Delta u+\int_0^tg(t-s)\Delta u(s)ds+a|u_t|^{m(x)-2}u_t=b|u|^{p(x)-2}u\] under initial-boundary condit
Externí odkaz:
http://arxiv.org/abs/2011.11185
Autor:
Liao, Menglan, Tan, Zhong
In this paper, a class of non-Newton filtration equations with singular potential and logarithmic nonlinearity under initial-boundary condition is investigated. Based on potential well method and Hardy-Sobolev inequality, the global existence of solu
Externí odkaz:
http://arxiv.org/abs/2010.01483
Classification of blow-up and global existence of solutions to an initial $\textrm{Neumann}$ problem
The aim of this paper is to apply the modified potential well method and some new differential inequalities to study the asymptotic behavior of solutions to the initial homogeneous $\hbox{Neumann}$ problem of a nonlinear diffusion equation driven by
Externí odkaz:
http://arxiv.org/abs/2009.04624
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the closure of approximating sequences of some diffusion equations under certain weak convergence. A specific description of the closure under weak $H^1$-convergence is given, which reduces to the original equation when the equation is parab
Externí odkaz:
http://arxiv.org/abs/1812.11646